Overview of HED Science at LLNL

Presented to OLUG 27 April 2012

Lawrence Livermore National Laboratory

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Otto Landen

HEDS facilities in recent use by LLNL staff

HEDS on NIF (HEDS on OMEGA covered by Postdocs/Students)

Basic Science on NIF (LBS on OMEGA covered by Postdocs/Students)

Jupiter Facility

FLASH/LCLS

Nevada TWF

ZBL

LLNL HEDS on NIF concentrated on Radiation Transport, Material Strength

Radiation Transport calorimetry

Time integrated X-ray emission from SXI-U

Radiation Transport Streaked Radiography

Ta EOS reached 6 Mbar quasiisentropically

A wide variety of experimental platforms are available to NIF users

More information at: https://lasers.llnl.gov/for_users

Three teams have already performed fundamental science NIF experiments

NIF has been used to "shocklessly" compress carbon to 100 Mbar

NIF can now recreate the most extreme planetary core states in the solar system

Diamond ramp compression achieved ~100 Mbar, ≈ 2x previous record

- •Free surface reflectivity maintained
- •Sample compressed with a series of small shocks and intermediate ramps
- •EOS may be obtainable analysis underway
- Next shot to use optimized laser pulse

First Fe ramp compression EOS experiment was conducted

- All 4 steps successfully compressed with steady 0.5 MBar shock
- Shock formed- VISAR blanked above ~ 6 km/sec (~ 2-3 MBar)
- Optimization of pulse shape in progress

Astrophysical neutron capture observed at NIF for the 1st time:

¹⁹⁷Au(n,γ)¹⁹⁸Au/¹⁹⁷Au(n,2n)¹⁹⁶Au

Collectors are retrieved post-shot

EOS of matter at > Gbar pressures

Jupiter facility

B and BN Structure factor experiments at TITAN laser

Probe is delayed 300 ps relative to heater pulse to reach thermal equilibrium

Jupiter facility

BN is ionized much less than B for same Te

Jupiter facility

Measured low BN ionization consistent with high T band structure

Laser Wakefield Acceleration at the Jupiter Facility (with UCSD, UCLA)

FLASH Experimental Hall, Hamburg

Experimental setup

FELs allow to study warm dense matter with sub-ps time resolution

- The two spectrometer signals peak at different times after excitation (peak at ~200 fs or ~2.5 ps)
 Courtesy of U. Zastrau
- \rightarrow possible signature of heat wave or strong absorption

Isochoric heating of graphite at sub-ps Stanford LCLS FEL

Target views

S Hau-Riege, A Graf, T Doeppner, S Glenzer et al.

Target chamber

. FEL, 2 keV 40-800 fs, <3mJ

S Hau-Riege, accepted, PRL (2012)

Bragg vs Rayleigh scatter for inferring graphite ion temperature

S Hau-Riege et al., accepted, PRL (2012)

Rayleigh scattering strongly increases in time due to lattice destruction and ionization, faster than expected

We infer ion heating up to 5 eV in graphite within a 80 fs long XFEL pulse at 2 keV photon energy

S Hau-Riege et al., accepted ,PRL (2012)

HEDS Scientists in multiple directorates are now colocated in one building (B481)

NIF Target Physics

Physical and Life Sciences EOS Radiative Properties Fusion Energy

- Includes ≈ 20 Postdoctoral Researchers, 10 Students, 10 Participating Guests, and offices for Scientists from LANL, SNL, OMEGA, MIT
- Also in close proximity to target design scientists in B381
- We are always looking for creative, motivated early-careeer scientists

