# Characterizing Debris-Shield Transmission Degradation and Estimating On-Target Energy



## J. KWIATKOWSKI, S. J. STAGNITTO, S. F. B. MORSE, M. LABUZETA, and V. GUILIANO

### University of Rochester, Laboratory for Laser Energetics

**OMEGA Now Provides an Estimate of On-Target Transmission Losses Resulting from Target Debris Contamination of Blast Window Assemblies** 

- Transmission of OMEGA debris shields is highly dependent on the type of experimental campaigns
- A laser-cleaning effect generally maintains individual beam transmission to ~90% of the "clean" Blast-Window-Assembly (BWA) condition
- Blow-through Omega Transport Imaging System (OTIS) measurements are used to monitor debris shield transmission throughout the BWA cycle
- An energy report is now provided to the principal investigators depicting estimated UV transmission losses
- Experiments with low debris impact are generally scheduled at the start of a BWA cycle, and high-impact shots precede refurbishment

**Debris shields will be changed ~15× in FY12.** 

**Target Debris Collects on the Surface of the Debris Shield and Reduces the UV On-Target Energy** 



- BWA consists of a vacuum window and a debris shield
- Surface contamination often exceeds 10<sup>6</sup> DPM/100 cm<sup>2</sup>
- Processing of BWA's is labor intensive and requires controlled surface contamination areas (CSCA's) qualified radiation workers
- decontamination of hardware - recoating or replacing debris shield

A "Laser-Cleaning Effect" is Observed After Shooting the Beam Through a Low-Transmission Debris Shield High-loss beams generally recover up to ~90% of clean transmission after the beam is fired Majority of laser-cleaning effect is realized after a single shot Beams with transmission loss >5% over the last ten mid-cycle OTIS runs 35 **■** Unfired beams ■ Fired beams **-21 -17 -13 -9 -5** UV loss (%)

**Blow-Through OTIS of Two Witness Beam Pairs is Used** to Estimate Individual Transmission of all 60 Beams



- Historical correlation of witness beam-pairs blow-through transmission is used to determine the overall system average
- Individual beam transmissions are calculated based on each beam's historical correlation to the system average
- Blow-through OTIS predicts
- 60-beam average transmission to ~1%
- individual beam transmission for beams that are shot to <2% rms</p>

**UV On-Target Energy is Reported Based on an Energy Measurement Made Upstream of the Target Chamber** <del>▗▊▗▐▀▀▀</del>▊▔▘<del>▊▀▀</del>▊▔<mark>▊▊▗▊▀▋</mark>▎▐▔▋

- Harmonic-energy detector (HED) measures on-shot UV along with residual IR and green
- HED is calibrated semi-annually (seven shots) and checked monthly (one shot) against a conventional calorimeter



"Mid-cycle" OTIS Measurements of all 60 Beams are **Now Taken to Understand Debris-Shield Transport Degredation After Two Weeks of Target Shots** 



- Overall system, as well as beam-to-beam, transmission can vary widely • Historical HED energy report specifies UV on-target energy based
- on clean debris-shield transmission



**Examples of Blow-Through Estimated Individual Beam** 







**UV Transmission Throughout each BWA Cycle** is Highly Campaign Dependent



Daily "Blow-through OTIS" Measurements are used to Monitor Debris-Shield Transmission Degradation



Operations Now Provides an HED Report That *Estimates* **UV On-Target Energy as a Function of Beamline** 



- Estimated DPP transmission is included in this report
- SG4 DPP transmission is beam specific non-SG4 DPP's are not beam specific; quoted
- transmission are the average for that DPP type
- This report is included in PI Packet
  - shot Images and reports page
- OMEGA Data Viewer

#### Summary

#### OMEGA Now Provides an Estimate of On-Target Transmission Losses Resulting from Target Debris Contamination of Blast Window Assemblies



- Transmission of OMEGA debris shields is highly dependent on the type of experimental campaigns
- A laser-cleaning effect generally maintains individual beam transmission to ~90% of the "clean" Blast-Window-Assembly (BWA) condition
- Blow-through Omega Transport Imaging System (OTIS) measurements are used to monitor debris shield transmission throughout the BWA cycle
- An energy report is now provided to the principal investigators depicting estimated UV transmission losses
- Experiments with low debris impact are generally scheduled at the start of a BWA cycle, and high-impact shots precede refurbishment

**Debris shields will be changed** ~15× in FY12.

### **UV On-Target Energy is Reported Based on an Energy Measurement Made Upstream of the Target Chamber**





- Harmonic-energy detector (HED) measures on-shot UV along with residual IR and green
- HED is calibrated semi-annually (seven shots) and checked monthly (one shot) against a conventional calorimeter



## OTIS is Used to Measure Absolute UV Transmission of all 60 Individual Beams When New BWA's are Installed (~Monthly)



### Target Debris Collects on the Surface of the Debris Shield and Reduces the UV On-Target Energy



- BWA consists of a vacuum window and a debris shield
- Surface contamination often exceeds 10<sup>6</sup> DPM/100 cm<sup>2</sup>
- Processing of BWA's is labor intensive and requires
  - controlled surface contamination areas (CSCA's)
  - qualified radiation workers
  - decontamination of hardware
  - recoating or replacing debris shield

#### "Mid-cycle" OTIS Measurements of all 60 Beams are Now Taken to Understand Debris-Shield Transport Degredation After Two Weeks of Target Shots



- Overall system, as well as beam-to-beam, transmission can vary widely
- Historical HED energy report specifies UV on-target energy based on clean debris-shield transmission

### **UV Transmission Throughout each BWA Cycle** is Highly Campaign Dependent





### A "Laser-Cleaning Effect" is Observed After Shooting the Beam Through a Low-Transmission Debris Shield

- High-loss beams generally recover up to ~90% of clean transmission after the beam is fired
- Majority of laser-cleaning effect is realized after a single shot







### Several Factors Contribute to the Magnitude and Distribution of Debris-Shield Transmission Degradation



### Average UV transport losses measured on mid-cycle OTIS runs (October 2010 to February 2011)



Scale:

19 (worst) = 
$$-10.7\%$$

22 (best) = -2.5%

- Target type and quantity
- Which beams are fired (i.e., laser-cleaning)
- Experiment geometry
- Beam location on target chamber

#### Daily "Blow-through OTIS" Measurements are used to Monitor Debris-Shield Transmission Degradation in a Subset of Beams



### Blow-Through OTIS of Two Witness Beam Pairs is Used to Estimate Individual Transmission of all 60 Beams



- Historical correlation of witness beam-pairs blow-through transmission is used to determine the overall system average
- Individual beam transmissions are calculated based on each beam's historical correlation to the system average
- Blow-through OTIS predicts
  - 60-beam average transmission to ~1%
  - individual beam transmission for beams that are shot to <2% rms</li>

### **Examples of Blow-Through Estimated Individual Beam Losses Compared to Actual OTIS Measurements**





### Operations Now Provides an HED Report That *Estimates* UV On-Target Energy as a Function of Beamline



| 3-feb                                                                            | -2012 19:57:16 |             |                   |                 |                   |                |        |     |
|----------------------------------------------------------------------------------|----------------|-------------|-------------------|-----------------|-------------------|----------------|--------|-----|
| Last BWA swap before this shot: 02/05/2012                                       |                |             |                   |                 |                   | # target shots | since: | 101 |
| Reported losses are predicted from witness beam measurements taken on 02/22/2012 |                |             |                   |                 |                   | # target shots | since: | 15  |
| on-SG                                                                            | 4 DPPs are not | beam specif | ic. Quoted transm | issions are ave | rage for that DPP | type.          |        |     |
|                                                                                  | HED On-Target  | Estimated   |                   | Estimated DPP   | Adj. On-Target    |                |        |     |
| Beam                                                                             | UV Energy      | BWA Loss    | DPP               | Transmission    | UV Energy         |                |        |     |
|                                                                                  |                |             |                   |                 | ****              |                |        |     |
| 11                                                                               |                |             | E-SG4-865         | 98.8%           | 493.6             |                |        |     |
| 13                                                                               |                |             | SG8               | 96.6%           |                   |                |        |     |
| 14                                                                               |                |             | E-SG4-865         | 98.8%           | 489.8             |                |        |     |
| 18                                                                               | 469.9          | -1.6%       | SG8               | 96.6%           | 446.5             |                |        |     |
| 24                                                                               | 483.7          | -1.5%       | SG8               | 96.6%           | 460.2             |                |        |     |
| 32                                                                               | 489.6          | -0.9%       | E-SG4-865         | 98.8%           | 479.5             |                |        |     |
| 47                                                                               | 477.7          | -1.0%       | E-SG4-865         | 98.8%           | 467.1             |                |        |     |
| 59                                                                               | 474.6          | -1.1%       | SG8               | 96.6%           | 453.2             |                |        |     |
| 66                                                                               | 472.7          | -0.7%       | 5G8               | 96.6%           | 453.4             |                |        |     |
| 67                                                                               | 468.6          | -1.6%       | SG8               | 96.6%           | 445.3             |                |        |     |
| 68                                                                               | 497.8          | -0.9%       | E-SG4-865         | 98.8%           | 487.4             |                |        |     |
| 69                                                                               | 494.3          | -1.4%       |                   | 98.8%           | 481.6             |                |        |     |
| Mean                                                                             | 483.9          | -1.1%       |                   |                 | 467.6             |                |        |     |
| RMS%                                                                             | 2.5            | 0.3%        |                   |                 | 3.6               |                |        |     |
| P/V%                                                                             | 7.0            | 1.0%        |                   |                 | 10.3              |                |        |     |

- Estimated DPP transmission is included in this report
  - SG4 DPP transmission is beam specific
  - non-SG4 DPP's are not beam specific; quoted transmission are the average for that DPP type
- This report is included in
  - PI Packet
  - shot Images and reports page
  - OMEGA Data Viewer