Characterizing Debris-Shield Transmission Degradation and Estimating On-Target Energy

J. KWIATKOWSKI, S. J. STAGNITTO, S. F. B. MORSE, M. LABUZETA, and V. GUILIANO

University of Rochester, Laboratory for Laser Energetics

Summary

OMEGA Now Provides an Estimate of On-Target Transmission Losses Resulting from Target Debris Contamination of Blast Window Assemblies

- Transmission of OMEGA debris shields is highly dependent on the type of experimental campaign.
- A laser cleaning effect generally maintains individual beam transmission by 90% of the "clean" Blast-Window-Assembly (BWA) condition.
- Blow-through OMEGA Transport Imaging System (OTIS) measurements are used to monitor debris shield transmission throughout the BWA cycle.
- An energy report is now provided to the principal investigators depicting estimated UV transmission losses.
- Experiments with low debris impact are generally scheduled at the start of a BWA cycle, and high-impact shots precede refurbishment.

Target Debris Collects on the Surface of the Debris Shield and Reduces the UV On-Target Energy

- BWA consists of a vacuum window and a debris shield.
- Surface contamination often exceeds 10^6 cm^2.
- Processing of BWAs is labor intensive and requires:
 - Controlled surface contamination areas (CSM)
 - Qualified radiation workers
 - Decontamination of bare metal
 - Replacing debris in place.

A "Laser-Cleaning Effect" is Observed After Shooting the Beam Through a Low-Transmission Debris Shield

- High-loss beams generally recover up to 90% of initial transmission after the beam is fired.
- Majority of laser cleaning effect is realized after a single shot.

UV On-Target Energy is Reported Based on an Energy Measurement Made Upstream of the Target Chamber

- Harmonic-energy detector (HED) measures can also UV within a residual IR and green.
- HED is calibrated semiannually (seven shots) and checked monthly (one shot) against a conventional calorimeter.

"Mid-cycle" OTIS Measurements of all 60 Beams are Now Taken to Understand Debris-Shield Transport Degradation After Two Weeks of Target Shots

- OTIS: Optical Transport Imaging System
- Average UV transport losses measured in mid-cycle OTIS (October 2010 to February 2011)
- Target type and quantity
- Which beams are fired
- Beam location on target chamber

Several Factors Contribute to the Magnitude and Distribution of Debris-Shield Transmission Degradation

- OTIS runs (June 2011 to August 2011)
- Blow-through estimated OTIS on a subset of beams takes ~20 min.
- Blow-through OTIS is used to monitor Debris-Shield Transmission Degradation in a Subset of Beams

OTIS is Used to Measure Absolute UV Transmission of all 60 Individual Beams When New BWAs are Installed (Monthly)

- Estimated DPP transmission is included in this report.
- OTIS runs used to characterize beam-specific.
- Measurement for OTIS energy are the average for that DPP type.
- This report is qualified to:
 - A target
 - A tool
 - OMEGA Data Viewer

Operations Now Provides an HED Report That Estimates UV On-Target Energy as a Function of Beamline

- Average loss for all 60 beams (%) - Low
- Average loss for all 60 beams (%) - High
- Initial loss
- Historical OTIS correlation of witness beam-pairs blow-through transmission is used to determine the overall system average.
- Individual beam transmissions are calculated based on each beam's historical correlation to the system average.
- Blow-through OTIS predicts:
 - 60-beam average transmission to ±5%.
 - Individual beam transmission for beams that are shot to ±2% rms.
Summary

OMEGA Now Provides an Estimate of On-Target Transmission Losses Resulting from Target Debris Contamination of Blast Window Assemblies

• Transmission of OMEGA debris shields is highly dependent on the type of experimental campaigns

• A laser-cleaning effect generally maintains individual beam transmission to \sim90\% of the “clean” Blast-Window-Assembly (BWA) condition

• Blow-through Omega Transport Imaging System (OTIS) measurements are used to monitor debris shield transmission throughout the BWA cycle

• An energy report is now provided to the principal investigators depicting estimated UV transmission losses

• Experiments with low debris impact are generally scheduled at the start of a BWA cycle, and high-impact shots precede refurbishment

Debris shields will be changed \sim15× in FY12.
UV On-Target Energy is Reported Based on an Energy Measurement Made Upstream of the Target Chamber

- Harmonic-energy detector (HED) measures on-shot UV along with residual IR and green
- HED is calibrated semi-annually (seven shots) and checked monthly (one shot) against a conventional calorimeter
OTIS is Used to Measure Absolute UV Transmission of all 60 Individual Beams When New BWA’s are Installed (~Monthly)

Result:
- Absolute-UV transport measurements to <2%
- Relative-UV transport measurements to <1%
Target Debris Collects on the Surface of the Debris Shield and Reduces the UV On-Target Energy

- BWA consists of a vacuum window and a debris shield
- Surface contamination often exceeds 10^6 DPM/100 cm2
- Processing of BWA’s is labor intensive and requires
 - controlled surface contamination areas (CSCA’s)
 - qualified radiation workers
 - decontamination of hardware
 - recoating or replacing debris shield
“Mid-cycle” OTIS Measurements of all 60 Beams are Now Taken to Understand Debris-Shield Transport Degredation After Two Weeks of Target Shots

- Overall system, as well as beam-to-beam, transmission can vary widely
- Historical HED energy report specifies UV on-target energy based on clean debris-shield transmission
UV Transmission Throughout each BWA Cycle is Highly Campaign Dependent

November 2011

- Benage- ABEX
- Heeter- Mboop
- Li- PProbe
- Loomis- Shear
- Sangster- CRYO
- Stoeckl- Preheat

May 2011

- Sangster- CRYO
- Mancini- 3-D Core
- Loomis- CHaRM
- Smalyuk- Toto
- Theobald- AmbientBL

- Sangster- CRYO
- Li- PartStop
- Comley- ShockLaue
- Casner- ImplDyn
- Rygg/Smith- EOS

June 2011

- Sangster- CRYO
- Kim- DTRat
- Theobald- ShockIgn
- Park- ColdPlasmas
- Smalyuk- KHInstability

July 2011

- Seka- 4ω ISE
- Fiksel- Spherical RT
- Ping- Atwood_11b
- Cobble- PDD

- Froula- CBET
- Smith- RampComp
- Smith- PhaseKin
A “Laser-Cleaning Effect” is Observed After Shooting the Beam Through a Low-Transmission Debris Shield

- High-loss beams generally recover up to ~90% of clean transmission after the beam is fired
- Majority of laser-cleaning effect is realized after a single shot

Beams with transmission loss >5% over the last ten mid-cycle OTIS runs

Self-cleaning after high-loss shots
Several Factors Contribute to the Magnitude and Distribution of Debris-Shield Transmission Degradation

- Target type and quantity
- Which beams are fired (i.e., laser-cleaning)
- Experiment geometry
- Beam location on target chamber

Average UV transport losses measured on mid-cycle OTIS runs (October 2010 to February 2011)

Scale:
19 (worst) = −10.7%
22 (best) = −2.5%
Daily “Blow-through OTIS” Measurements are used to Monitor Debris-Shield Transmission Degradation in a Subset of Beams.
Blow-Through OTIS of Two Witness Beam Pairs is Used to Estimate Individual Transmission of all 60 Beams

- Historical correlation of witness beam-pairs blow-through transmission is used to determine the overall system average
- Individual beam transmissions are calculated based on each beam’s historical correlation to the system average
- Blow-through OTIS predicts
 - 60-beam average transmission to ~1%
 - individual beam transmission for beams that are shot to <2% rms
Examples of Blow-Through Estimated Individual Beam Losses Compared to Actual OTIS Measurements
Operations Now Provides an HED Report That *Estimates* UV On-Target Energy as a Function of Beamline

- Estimated DPP transmission is included in this report
 - SG4 DPP transmission is beam specific
 - non-SG4 DPP’s are not beam specific; quoted transmission are the average for that DPP type

- This report is included in
 - PI Packet
 - shot Images and reports page
 - OMEGA Data Viewer