

J. KATZ, R. BONI, D. H. FROULA, G. GATES, A. NAUSS, J. SZCZEPANSKI, M. J. SHOUP III, AND A. AGLIATA

Summarv

The Upgraded Thomson–Scattering System is a Robust **Diagnostic Platform on the OMEGA Laser**

- The Thomson–scattering system measures plasma conditions such as ion and electron temperature, electron density, and plasma-flow velocity
- Fully reflective optical transport provides high-quality imaging for wavelengths ranging from 200 nm to 800 nm
- Improved UV signal throughput allows for the detection of Thomson scattering from electron-plasma wave features using a 263-nm probe beam
- Two streak-camera-coupled spectrometers and a gated optical imager are available to support a variety of experimental objectives

E21091

A New Instrument Platform Houses Diagnostics for Time-Resolved Spectroscopy and Gated 2-D Imaging

- Ion-acoustic wave system
- high-resolution spectrometer coupled to ROSS streak camera
- Electron-plasma wave system
- broadband spectrometer coupled to ROSS streak camera
- **Optical imager**
- high-resolution gated charge-coupled-device (CCD) camera

Each of the three detector systems can be independently configured to support a variety of experimental objectives.

University of Rochester, Laboratory for Laser Energetics

A New TIM-Based Reflective Telescope Provides High-Quality Imaging of Optical Emission from 200 to 800 nm

The Ion-Acoustic Wave System Consists of a 1-m **Spectrometer Coupled to a ROSS Streak Camera**

Electron-Plasma Wave System Consists of a 0.3-m Spectrometer Coupled to a ROSS Streak Camera

Spectrometer focal length	0.3 m
Spectral resolution	0.5 to 2.0 nm
Spectral window	75 to 375 nm
Detectable wavelengths	200 to 800 nm
Temporal resolution	100 ps
Sweep speeds	1.5 ns, 5 ns, 15 ns, 25 ns
Maximum field of view at TCC	275 μm
Image magnification	2.1×

E20965

E20966

Initial Telescope Performance Tests Demonstrate High **Spatial Resolution and Diffraction-Limited Spot Sizes**

Airy disk formed imaging 4- μ m core single-mode fiber

Wavelength: 635 nm Working *f*/#: 23 Calculated airy disk: 35.6 μ m

Detector	Pi-Max-3 Gated CCD
Detectable wavelengths	200 to 800 nm
Minimum gate duration	3 ns
Field of view at TCC	1.5 mm
Spatial resolution at TCC	20 <i>µ</i> m
Image magnification	3.2×

The Upgraded Thomson–Scattering System is a Robust Diagnostic Platform on the OMEGA Laser

- The Thomson–scattering system measures plasma conditions such as ion and electron temperature, electron density, and plasma-flow velocity
- Fully reflective optical transport provides high-quality imaging for wavelengths ranging from 200 nm to 800 nm
- Improved UV signal throughput allows for the detection of Thomson scattering from electron-plasma wave features using a 263-nm probe beam
- Two streak-camera-coupled spectrometers and a gated optical imager are available to support a variety of experimental objectives

A New TIM-Based Reflective Telescope Provides High-Quality Imaging of Optical Emission from 200 to 800 nm

The TIM-Based Telescope Uses an Unobstructed Section of a Schwarzschild Objective

- Diffraction limited
- f/10 collection
- Unobstructed
- Spherical optics
- All-reflective transport
- Aluminum coatings
 >80% reflectivity 200 to 800 nm

Initial Telescope Performance Tests Demonstrate High Spatial Resolution and Diffraction-Limited Spot Sizes

Imaged microscopy mesh grid

Airy disk formed imaging $4-\mu m$ core single-mode fiber

Wavelength: 635 nm Working *f*/#: 23 Calculated airy disk: 35.6 μm

Hole width: 28 μ m, bar width: 23 μ m Image magnification: 2.3× Illumination wavelength: 635 nm

A New Instrument Platform Houses Diagnostics for Time-Resolved Spectroscopy and Gated 2-D Imaging

- Ion-acoustic wave system
 - high-resolution
 spectrometer coupled
 to ROSS streak camera
- Electron-plasma wave system
 - broadband spectrometer coupled to ROSS streak camera
- Optical imager
 - high-resolution gated charge-coupled–device (CCD) camera

Each of the three detector systems can be independently configured to support a variety of experimental objectives.

The Ion-Acoustic Wave System Consists of a 1-m Spectrometer Coupled to a ROSS Streak Camera

UR

Spectrometer focal length	1.0 m
Spectral resolution	0.03 to 0.1 nm
Spectral window	4 to 6 nm
Detectable wavelengths	200 to 800 nm
Temporal resolution	200 ps
Sweep speeds	1.5 ns, 5 ns, 15 ns, 25 ns
Maximum field of view at TCC	370 μm
Image magnification	1.4×

Electron-Plasma Wave System Consists of a 0.3-m Spectrometer Coupled to a ROSS Streak Camera

UR

Spectrometer focal length	0.3 m
Spectral resolution	0.5 to 2.0 nm
Spectral window	75 to 375 nm
Detectable wavelengths	200 to 800 nm
Temporal resolution	100 ps
Sweep speeds	1.5 ns, 5 ns, 15 ns, 25 ns
Maximum field of view at TCC	275 μm
Image magnification	2.1×

The Optical Imager Consists of a Gated Charge-Coupled–Device Camera

Detector	Pi-Max-3 Gated CCD
Detectable wavelengths	200 to 800 nm
Minimum gate duration	3 ns
Field of view at TCC	1.5 mm
Spatial resolution at TCC	20 <i>µ</i> m
Image magnification	3.2×