The Upgraded Thomson–Scattering System is a Robust Diagnostic Platform on the OMEGA Laser

- The Thomson–scattering system measures plasma conditions such as ion and electron temperature, electron density, and plasma-flow velocity.
- Fully reflective optical transport provides high-quality imaging for wavelengths ranging from 200 nm to 800 nm.
- Improved UV signal throughput allows for the detection of Thomson scattering from electron-plasma wave features using a 263-nm probe beam.
- Two streak-camera-coupled spectrometers and a gated optical imager are available to support a variety of experimental objectives.

A New TIM-Based Reflective Telescope Provides High-Quality Imaging of Optical Emission from 200 to 800 nm

- Diffraction limited
- f/10 collection
- Unobstructed
- Spherical optics
- All-reflective transport
- Aluminum coatings >80% reflectivity 200 to 800 nm

Initial Telescope Performance Tests Demonstrate High Spatial Resolution and Diffraction-Limited Spot Sizes

- Airy disk formed imaging
- 4-nm core single-mode fiber
- Imaged microscopy mesh grid
- Hole width: 28 nm, bar width: 23 nm
- Image magnification: 2.3 ×
- Illumination wavelength: 635 nm
- Working f/#: 23
- Calculated airy disk: 35.6 nm
- Lineout: 37 nm
- Intensity: 1000 nW

A New Instrument Platform Houses Diagnostics for Time-Resolved Spectroscopy and Gated 2-D Imaging

- Ion-acoustic wave system – high-resolution spectrometer coupled to ROSS streak camera
- Electron-plasma wave system – broadband spectrometer coupled to ROSS streak camera
- Optical imager – high-resolution gated charge-coupled-device (CCD) camera

Each of the three detector systems can be independently configured to support a variety of experimental objectives.

The Ion-Acoustic Wave System Consists of a 1-m Spectrometer Coupled to a ROSS Streak Camera

- Spectrometer focal length: 1.0 m
- Spectral resolution: 0.03 to 0.1 nm
- Spectral window: 4 to 6 nm
- Detectable wavelengths: 200 to 800 nm
- Temporal resolution: 200 ps
- Sweep speeds: 1.5 ns, 5 ns, 15 ns, 25 ns
- Maximum field of view at TCC: 370 nm
- Image magnification: 1.4 ×

The Electron-Plasma Wave System Consists of a 0.3-m Spectrometer Coupled to a ROSS Streak Camera

- Spectrometer focal length: 0.3 m
- Spectral resolution: 0.5 to 2.0 nm
- Spectral window: 75 to 375 nm
- Detectable wavelengths: 200 to 800 nm
- Temporal resolution: 100 ps
- Sweep speeds: 1.5 ns, 5 ns, 15 ns, 25 ns
- Maximum field of view at TCC: 275 nm
- Image magnification: 2.1 ×

The Optical Imager Consists of a Gated Charge-Coupled–Device Camera

- Detector Pi-Max-3 Gated CCD
- Detectable wavelengths: 200 to 800 nm
- Minimum gate duration: 3 ns
- Field of view at TCC: 1.5 mm
- Spatial resolution at TCC: 20 nm
- Image magnification: 3.2 ×

The TIM-Based Telescope Uses an Unobstructed Section of a Schwarzschild Objective

- Optical axis
- Mirror’s shared center of curvature
- Secondary mirror
- Blast window
- Primary mirror
- Thomson-scattering polychromatic diffraction modulation transfer function (MTF)

- Frequency (cycles/mm)
- Modulation 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

The Upgraded Thomson–Scattering System is a Robust Diagnostic Platform on the OMEGA Laser

University of Rochester, Laboratory for Laser Energetics

OMEGA Thomson Scattering System Upgrade
Summary

The Upgraded Thomson–Scattering System is a Robust Diagnostic Platform on the OMEGA Laser

- The Thomson–scattering system measures plasma conditions such as ion and electron temperature, electron density, and plasma-flow velocity
- Fully reflective optical transport provides high-quality imaging for wavelengths ranging from 200 nm to 800 nm
- Improved UV signal throughput allows for the detection of Thomson scattering from electron-plasma wave features using a 263-nm probe beam
- Two streak-camera–coupled spectrometers and a gated optical imager are available to support a variety of experimental objectives
A New TIM-Based Reflective Telescope Provides High-Quality Imaging of Optical Emission from 200 to 800 nm
The TIM-Based Telescope Uses an Unobstructed Section of a Schwarzschild Objective

- Diffraction limited
- f/10 collection
- Unobstructed
- Spherical optics
- All-reflective transport
- Aluminum coatings
 >80% reflectivity 200 to 800 nm
Initial Telescope Performance Tests Demonstrate High Spatial Resolution and Diffraction-Limited Spot Sizes

Imaged microscopy mesh grid

Airy disk formed imaging
4-μm core single-mode fiber

Image

Lineout

Wavelength: 635 nm
Working f/#: 23
Calculated airy disk: 35.6 μm

Hole width: 28 μm, bar width: 23 μm
Image magnification: 2.3×
Illumination wavelength: 635 nm
A New Instrument Platform Houses Diagnostics for Time-Resolved Spectroscopy and Gated 2-D Imaging

- Ion-acoustic wave system
 - high-resolution spectrometer coupled to ROSS streak camera
- Electron-plasma wave system
 - broadband spectrometer coupled to ROSS streak camera
- Optical imager
 - high-resolution gated charge-coupled-device (CCD) camera

Each of the three detector systems can be independently configured to support a variety of experimental objectives.
The Ion-Acoustic Wave System Consists of a 1-m Spectrometer Coupled to a ROSS Streak Camera

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer focal length</td>
<td>1.0 m</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>0.03 to 0.1 nm</td>
</tr>
<tr>
<td>Spectral window</td>
<td>4 to 6 nm</td>
</tr>
<tr>
<td>Detectable wavelengths</td>
<td>200 to 800 nm</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>200 ps</td>
</tr>
<tr>
<td>Sweep speeds</td>
<td>1.5 ns, 5 ns, 15 ns, 25 ns</td>
</tr>
<tr>
<td>Maximum field of view at TCC</td>
<td>370 (\mu)m</td>
</tr>
<tr>
<td>Image magnification</td>
<td>1.4X</td>
</tr>
</tbody>
</table>
Electron-Plasma Wave System Consists of a 0.3-m Spectrometer Coupled to a ROSS Streak Camera

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer focal length</td>
<td>0.3 m</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>0.5 to 2.0 nm</td>
</tr>
<tr>
<td>Spectral window</td>
<td>75 to 375 nm</td>
</tr>
<tr>
<td>Detectable wavelengths</td>
<td>200 to 800 nm</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>100 ps</td>
</tr>
<tr>
<td>Sweep speeds</td>
<td>1.5 ns, 5 ns, 15 ns, 25 ns</td>
</tr>
<tr>
<td>Maximum field of view at TCC</td>
<td>275 μm</td>
</tr>
<tr>
<td>Image magnification</td>
<td>2.1×</td>
</tr>
</tbody>
</table>
The Optical Imager Consists of a Gated Charge-Coupled–Device Camera

<table>
<thead>
<tr>
<th>Detector</th>
<th>Pi-Max-3 Gated CCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectable wavelengths</td>
<td>200 to 800 nm</td>
</tr>
<tr>
<td>Minimum gate duration</td>
<td>3 ns</td>
</tr>
<tr>
<td>Field of view at TCC</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Spatial resolution at TCC</td>
<td>20 µm</td>
</tr>
<tr>
<td>Image magnification</td>
<td>3.2×</td>
</tr>
</tbody>
</table>