OMEGA EP Facility Update and Progress on OLUG Recommendations

D. CANNING, S. F. B. MORSE, S. HOUSEHOLDER, M. LABUZETA, E. HILL, B KRUSCHWITZ, and M. MOORE

University of Rochester, Laboratory for Laser Energetics

Summary

OMEGA EP Continues to Evolve into a More-Effective User Facility
- Availability and effectiveness are improving as the system matures
- The number of shots per day has seen an increase in the last year

OMEGA EP Availability and Experimental Effectiveness
- More-Effective User Facility
- OMEGA EP Continues to Evolve into a More-Effective User Facility

OMEGA EP Focal Spot Quality Continues to Improve
- Static wavefront corrections have been added to beams 1 and 2
- Focal spot performance is now dominated by low-order wavefront drift between stopping active correction and shot time

OMEGA EP Now Offers Increased Operational Flexibility
- Beam-to-beam timing can be improved on subsequent shots, but only if the beam-to-beam timing accuracy is zero
- Beam-to-beam timing on the first target shot of the day can be expected to be within 100 ps for UV beams and 50 ps for SP beams

OMEGA EP Facility Update and Progress
- A discrete set of additional subnanosecond UV pulse lengths are available
- Subnanosecond UV Pulses have been Activated on OMEGA EP
- Short-Pulse Front Ends will be Upgraded to Improve Contrast
- An FY13–FY17 project is being developed to support the OLUG request for short-pulse frequency conversion

Maximum Available Energy Continues to Increase
- LLNL is working to acquire new capabilities in high-energy lasers
- LLNL has achieved the full specified energy on target for a limited number of Beam 4 shots
- Work continues to improve the UV performance of Beams 1 and 2

New laser diagnostics have improved the beam-to-beam timing accuracy
- Pre-shot timing is set using diagnostics that have been calibrated to on-shot target diagnostics
- Beam-to-beam timing on the first target shot of the day can be expected to be within 100 ps for UV beams and 50 ps for SP beams

A Beam Combiner has been Installed in the GCC to Support Co-Propagation of Beams 1 and 2
- Co-propagation of Beams 1 and 2 will first be activated to the OMEGA EP backlighter path and then to OMEGA
- Significant differential wavefront between the beams reflected off and propagated through the beam combiner results in one or both beams picking up significant aberrations

Table: OMEGA EP Focal Spot Quality

<table>
<thead>
<tr>
<th>Beam</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>-95</td>
<td>-85</td>
</tr>
<tr>
<td>UV</td>
<td>-80</td>
<td>-70</td>
</tr>
</tbody>
</table>

Table: OMEGA EP Focal Spot Size

<table>
<thead>
<tr>
<th>Beam</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>50 μm</td>
</tr>
<tr>
<td>UV</td>
<td>20 μm</td>
</tr>
</tbody>
</table>

Table: OMEGA EP Focal Spot Energy

<table>
<thead>
<tr>
<th>Beam</th>
<th>Energy (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>500 J</td>
</tr>
<tr>
<td>UV</td>
<td>100 J</td>
</tr>
</tbody>
</table>

Diagrams

- OMEGA EP Facility Map
- OMEGA EP Focal Spot Comparison
- OMEGA EP Focal Spot Size Distribution
- OMEGA EP Focal Spot Energy Distribution
- OMEGA EP Focal Spot Quality Improvement Timeline

References

- OLUG Request for OMEGA EP Configuration Flexibility
- A vacuum vessel containing frequency-conversion crystals will add 3x3x0 capability to the OMEGA EP short pulse

Summary

OMEGA EP Continues to Evolve into a More-Effective User Facility

- Availability and effectiveness are improving as the system matures
- The average number of shots per day has seen an increase in the last year
- Timing performance is benefiting from new pre-shot timing diagnostics
- Available energy, focal performance, and contrast have improved and will continue to do so in the coming year
- Several OLUG recommended projects will add flexibility to the OMEGA EP Laser System to facilitate new experimental platforms
OMEGA EP Availability and Experimental Effectiveness
Continue to Improve

• Availability
 – overall availability = 84%

• Effectiveness
 – overall effectiveness = 95%
OMEGA EP Averaged 5.8 Shots per Day Over the Past Year, Up from 5.4 for the Previous Year

- 482 target shots 4/11 to 4/12
Maximum Available Energy Continues to Increase

- LLE is working to acquire new gratings with an increased short-pulse laser damage threshold in FY13-14
- LLE has achieved the full specification energy on target for a limited number of Beam 4 UV shots
- Work continues to improve the UV performance of Beams 1 and 2

OMEGA EP performance envelop descriptive values*

<table>
<thead>
<tr>
<th>Short pulse (IR)</th>
<th>Pulse length</th>
<th>Beam</th>
<th>1 (current)</th>
<th>1 (full spec)</th>
<th>2 (current)</th>
<th>2 (full spec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-target energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No disposable debris shield</td>
<td>0.7 ps</td>
<td>50 J</td>
<td>700 J</td>
<td>400 J</td>
<td>700 J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 ps</td>
<td>850 J</td>
<td>2600 J</td>
<td>1500 J</td>
<td>2600 J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 ps</td>
<td>1000 J</td>
<td>2600 J</td>
<td>2000 J</td>
<td>2600 J</td>
<td></td>
</tr>
</tbody>
</table>

Note: Beam 1 is also known as the “sidelighter” or the “lower compressor”
Beam 2 is the “backlighter” (OMEGA EP or OMEGA) or the “upper compressor”

Long pulse (UV)升降级

<table>
<thead>
<tr>
<th>Long pulse (UV)</th>
<th>Pulse length</th>
<th>Beam</th>
<th>1 (current)</th>
<th>2 (current)</th>
<th>3 (current)</th>
<th>4 (current)</th>
<th>Any beam (full spec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-target energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square pulse shape values</td>
<td>100 ps</td>
<td>100 J</td>
<td>100 J</td>
<td>100 J</td>
<td>100 J</td>
<td>100 J</td>
<td>100 J</td>
</tr>
<tr>
<td></td>
<td>1 ns</td>
<td>950 J</td>
<td>950 J</td>
<td>1250 J</td>
<td>1250 J</td>
<td>2000 J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 ns</td>
<td>1350 J</td>
<td>1350 J</td>
<td>1800 J</td>
<td>1800 J</td>
<td>2900 J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 ns</td>
<td>1900 J</td>
<td>1900 J</td>
<td>2500 J</td>
<td>2500 J</td>
<td>4100 J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 ns</td>
<td>2300 J</td>
<td>2300 J</td>
<td>3100 J</td>
<td>3100 J</td>
<td>5000 J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 ns</td>
<td>3000 J</td>
<td>3000 J</td>
<td>4000 J</td>
<td>4000 J</td>
<td>6500 J</td>
<td></td>
</tr>
</tbody>
</table>

Revision date: 02/21/12
OMEGA EP Now Offers Increased Operational Flexibility

• Short-pulse (SP) and UV focal-spot size changes may be made between shots without extending the shot cycle

• SP and UV pointing changes can be supported with a minimal (30-min) extension to the shot cycle when planned in advance

• UV timing changes can be made at no cost to the shot cycle

• SP timing changes will have minimal impact on the shot cycle if they are specified immediately post shot

• UV pulse shape changes will typically not extend the shot cycle if they are started immediately post shot

• SP pulse length changes between 10 and 100 ps can be accomplished with a 30-min extension to the shot cycle and some modest energy restrictions

• Changes to or from best compression will cost approximately one shot cycle

• It is imperative that an SRF for every potentially desired energy and pulse shape/width be in the system at the one week brief
Subnanosecond UV Pulses have been Activated on OMEGA EP

- 100-ps UV pulses with an energy of 100 J are now available on all four beamlines
- A discrete set of additional subnanosecond UV pulse lengths with energies greater than 100 J will be activated in FY12 Q3
New laser diagnostics have improved the beam-to-beam timing accuracy

- Pre-shot timing is set using diagnostics that have been calibrated to on-shot target diagnostics
 - to determine absolute on-shot timing, a time-resolved target diagnostic must be used
- Beam-to-beam timing on the first target shot of the day can be expected to be within 100 ps for UV beams and 50 ps for SP beams
- Beam-to-beam timing can be improved on subsequent shots, but only if an on-shot target diagnostic such as the UFXRS or PJX is deployed

*Calibrated to target on-shot timing diagnostics
OMEGA EP Focal Spot Quality Continues to Improve

- Static wavefront correctors have been added to beamlines 1 and 2
 - the number of shots with $R_{80} < 20 \ \mu m$ has significantly increased
 - a 10% to 20% reduction in the average focal-spot size has been realized

- Focal spot performance is now dominated by low-order wavefront drift between stopping active correction and shot time

- A project to permit active wavefront correction much closer to shot time is underway and expected to provide significant improvement

Before

\[
\langle R_{80} \rangle = 17.5 \ \mu rad
\]

After

\[
\langle R_{80} \rangle = 13.0 \ \mu rad
\]

Ensemble average of ten measurements with active wavefront control
Short-Pulse Front Ends will be Upgraded to Improve Contrast

- An additional stage of OPA is being added to Beams 1 and 2
- Contrast is anticipated to improve by a factor of ~100 to 1000
A Beam Combiner has been Installed in the GCC to Support Co-Propagation of Beams 1 and 2

• Co-propagation of Beams 1 and 2 will first be activated to the OMEGA EP backlighter path and then to OMEGA

• Significant differential wavefront between the beams reflected off and propagated through the beam-combiner optic results in one or both beams picking up significant aberrations

• Co-located foci will be activated before spot separation is explored
A FY13–FY17 Project is being Developed to Support an OLUG Request for OMEGA EP Configuration Flexibility

- Beams 2 and 4 would be reconfigurable to illuminate the back side of a target entering the target chamber at ports 44 and 59

![Diagram of OMEGA EP target chamber with various components labeled, including Frequency-conversion crystals, Vacuum window, Phase plate, UV diagnostic beamsplitter, Focus lens, Debris shield, New UV transport mirror, and New focus lens assembly.]
An FY13–FY17 project is being developed to support the OLUG request for short-pulse frequency conversion.

- A vacuum vessel containing frequency-conversion crystals will add $2\omega/3\omega$ capability to the OMEGA EP short pulse.