

D. CANNING, S. F. B. MORSE, S. HOUSEHOLDER, M. LABUZETA, E. HILL, B KRUSCHWITZ, and M. MOORE **University of Rochester, Laboratory for Laser Energetics**

OMEGA EP Facility Update and Progress on OLUG Recommendations

Maximum Available Energy Continues to Increase

- LLE is working to aquire new gratings with an increased short-pulse laser damage threshold in FY13-14
- LLE has achieved the full specification energy on target for a limited number of Beam 4 UV shots
- Work continues to improve the UV performance of Beams 1 and 2

OMEGA EP perform	GA EP performance envelop descriptive values*			Revision date: 02/21/12		
Short pulse (IR)			Beam			
On-target energy	Pulse length	1 (current)	1 (full spec)	2 (current)	2 (full spec)	
No disposable debris shield	0.7 ps	50 J	700 J	400 J	700 J	
	10 ps	850 J	2600 J	1500 J	2600 J	
	100 ps	1000 J	2600 J	2000 J	2600 J	
	Note: Beam 1 is Beam 2 is		e "sidelighter" or (OMEGA EP or C			
Long pulse (UV)		Beam				
On target energy	Dulso longth	1 (ourropt)	2 (ourront)	2 (ourropt)	(ourropt)	

On-target energy	Pulse length	1 (current)	2 (current)	3 (current)	4 (current)	Any beam (full spec)
Square pulse shape values	100 ps	100 J				
	1 ns	950 J	950 J	1250 J	1250 J	2000 J
	2 ns	1350 J	1350 J	1800 J	1800 J	2900 J
	4 ns	1900 J	1900 J	2500 J	2500 J	4100 J
	6 ns	2300 J	2300 J	3100 J	3100 J	5000 J
	10 ns	3000 J	3000 J	4000 J	4000 J	6500 J

OMEGA EP Now Offers Increased Operational Flexibility

- Short-pulse (SP) and UV focal-spot size changes may be made between shots without extending the shot cycle
- SP and UV pointing changes can be supported with a minimal (30-min) extension to the shot cycle when planned in advance
- UV timing changes can be made at no cost to the shot cycle
- SP timing changes will have minimal impact on the shot cycle if they are specified immediately post shot
- UV pulse shape changes will typically not extend the shot cycle if they are started immediately post shot
- SP pulse length changes between 10 and 100 ps can be accomplished with a 30-min extension to the shot cycle and some modest energy restrictions
- Changes to or from best compression will cost approximately one shot cycle
- It is imperative that an SRF for every potentially desired energy and pulse shape/width be in the system at the one week brief

Subnanosecond UV Pulses have been Activated on OMEGA EP

- 100-ps UV pulses with an energy of 100 J are now available on all four beamlines
- A discrete set of additional subnanosecond UV pulse lengths with energies greater than 100 J will be activated in FY12 Q3

G9495

OMEGA EP Continues to Evolve into a More-Effective User Facility

- Availability and effectiveness are improving as the system matures
- The average number of shots per day has seen an increase in the last year

- Timing performance is benefiting from new pre-shot timing diagnostics
- Available energy, focal performance, and contrast have improved and will continue to do so in the coming year
- Several OLUG recommended projects will add flexibility to the OMEGA EP Laser System to facilitate new experimental platforms

OMEGA EP Availability and Experimental Effectiveness Continue to Improve

- Availability
 - overall availability = 84%

- Effectiveness
 - overall effectiveness = 95%

OMEGA EP Averaged 5.8 Shots per Day Over the Past Year, Up from 5.4 for the Previous Year

Maximum Available Energy Continues to Increase

- LLE is working to aquire new gratings with an increased short-pulse laser damage threshold in FY13-14
- LLE has achieved the full specification energy on target for a limited number of Beam 4 UV shots
- Work continues to improve the UV performance of Beams 1 and 2

OMEGA EP perform	Revision date: 02/21/12					
Short pulse (IR)		Beam				
On-target energy	Pulse length	1 (current)	1 (full spec)	2 (current)	2 (full spec)	
No disposable debris shield	0.7 ps	50 J	700 J	400 J	700 J	
	10 ps	850 J	2600 J	1500 J	2600 J	
	100 ps	1000 J	2600 J	2000 J	2600 J	

Note: Beam 1 is also known as the "sidelighter" or the "lower compressor" Beam 2 is the "backlighter" (OMEGA EP or OMEGA) or the "upper compressor"

Long pulse (UV)		Beam					
On-target energy	Pulse length	1 (current)	2 (current)	3 (current)	4 (current)	Any beam (full spec)	
Square pulse shape values	100 ps	100 J					
	1 ns	950 J	950 J	1250 J	1250 J	2000 J	
	2 ns	1350 J	1350 J	1800 J	1800 J	2900 J	
	4 ns	1900 J	1900 J	2500 J	2500 J	4100 J	
	6 ns	2300 J	2300 J	3100 J	3100 J	5000 J	
	10 ns	3000 J	3000 J	4000 J	4000 J	6500 J	

OMEGA EP Now Offers Increased Operational Flexibility

- Short-pulse (SP) and UV focal-spot size changes may be made between shots without extending the shot cycle
- SP and UV pointing changes can be supported with a minimal (30-min) extension to the shot cycle when planned in advance
- UV timing changes can be made at no cost to the shot cycle
- SP timing changes will have minimal impact on the shot cycle if they are specified immediately post shot
- UV pulse shape changes will typically not extend the shot cycle if they are started immediately post shot
- SP pulse length changes between 10 and 100 ps can be accomplished with a 30-min extension to the shot cycle and some modest energy restrictions
- Changes to or from best compression will cost approximately one shot cycle
- It is imperative that an SRF for every potentially desired energy and pulse shape/width be in the system at the one week brief

Subnanosecond UV Pulses have been Activated on OMEGA EP

- 100-ps UV pulses with an energy of 100 J are now available on all four beamlines
- A discrete set of additional subnanosecond UV pulse lengths with energies greater than 100 J will be activated in FY12 Q3

Timing fiducial Time-based calibration 0 1 2 3 4 5 ns

UR

All UV beams at 100 ps on UV-ROSS

New laser diagnostics have improved the beam-to-beam timing accuracy

- Pre-shot timing is set using diagnostics that have been calibrated to on-shot target diagnostics
 - to determine absolute on-shot timing, a time-resolved target diagnostic must be used
- Beam-to-beam timing on the first target shot of the day can be expected to be within 100 ps for UV beams and 50 ps for SP beams
- Beam-to-beam timing can be improved on subsequent shots, but only if an on-shot target diagnostic such as the UFXRS or PJX is deployed

*Calibrated to target on-shot timing diagnostics

OMEGA EP Focal Spot Quality Continues to Improve

- Static wavefront correctors have been added to beamlines 1 and 2
 - the number of shots with R_{80} < 20 μ m has significantly increased
 - a 10% to 20% reduction in the average focal-spot size has been realized
- Focal spot performance is now dominated by low-order wavefront drift between stopping active correction and shot time
- A project to permit active wavefront correction much closer to shot time is underway and expected to provide significant improvement

Short-Pulse Front Ends will be Upgraded to Improve Contrast

- An additional stage of OPA is being added to Beams 1 and 2
- Contrast is anticipated to improve by a factor of ~100 to 1000

A Beam Combiner has been Installed in the GCC to Support Co-Propagation of Beams 1 and 2

- Co-propagation of Beams 1 and 2 will first be activated to the OMEGA EP backlighter path and then to OMEGA
- Significant differential wavefront between the beams reflected off and propagated through the beam-combiner optic results in one or both beams picking up significant aberrations
- Co-located foci will be activated before spot separation is explored

A FY13–FY17 Project is being Developed to Support an OLUG Request for OMEGA EP Configuration Flexibility

• Beams 2 and 4 would be reconfigurable to illuminate the back side of a target entering the target chamber at ports 44 and 59

An FY13–FY17 project is being developed to support the OLUG request for short-pulse frequency conversion

• A vacuum vessel containing frequency-conversion crystals will add $2\omega/3\omega$ capability to the OMEGA EP short pulse