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Overview of the Current Status 
of Shock Ignition



Workshop discussions focused on target design and 
understanding the effects of LPI on target performance

TC9303

Target design

	 •	 Design viable implosion platforms over a variety of facilities

	 •	 Develop a wide database evaluating strengths and faults  
	 of shock-ignition (SI) designs

	 •	 Design experimental platforms for OMEGA and the NIF

LPI

	 •	 Identify, quantify, and mitigate preheat during the fuel-assembly phase 

	 •	 Determine the benefits and detriments of spike-pulse preheat
	 	 	 –	 enhanced drive 
	 	 	 –	 fuel-assembly preheat
	 	 	 –	 backscatter losses

Summary/Outline
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The puzzle of high gains: 
how to ignite low-velocity imploding targets

TC9304

• 	Thick shells (with large fuel mass) produce high gains if ignited

• 	Thick shells have good hydro-stability properties (because they are thick)

• 	For a fixed laser energy, thick shells have low-implosion velocity

• 	Low-implosion velocity leads to low hot-spot pressure (P ~ Vi2–3)

• 	Low-pressure hot spots do not ignite (Px > 30 Gbar/ns)

• 	The energy required for ignition scales as E ~ 1/P2–2.5

How do we ignite low-velocity implosions?

FSC



Raising the kinetic energy by thickening the shell 
does not increase the hot-spot pressure 

TC8240
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Without rarefaction waves, the peak hot-spot pressure 
would be twice as high

TC9190 R. Nora and R. Betti, submitted to Phys. Plasmas.
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The re-shock technique produces the highest  
hot-spot pressure

TC9201 R. Nora and R. Betti, submitted to Phys. Plasmas.
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The shock pressure
is high because of 
the planar geometry
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EL = 350-kJ UV light, Vi = 2.4 × 107 cm/s, a = 1, mL = 0.35 nm
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Optimal shock-ignition targets are wetted-foam shells
(in the absence of hot-electron preheat)

TC7821d

•	 Standard pulse-shape abs. frac. = 0.55
•	 Shock-ignition pulse-shape abs. frac. = 0.50

1R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).
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Candidate NIF shock ignition targetsCandidate NIF shock ignition targets

Non-Cryo
Hydro-Equiv. CH

Non-Cryo
Pushered Single 

Shell

High Gain Cryo

• Immediate term (~1-3yr) 
tests of polar drive 
symmetry, shock 
coupling, late-time LPI 
with day-1 hardware

• Diagnostic yields only at 
~0.5MJ drive

• Near term (~3yr) tests of 
room-temp volumetric 
ignition at ~4keV

• Gain/yield ~1/1MJ @ 
~1.5MJ drive

• Req’d NIF hardware?

• Medium term (~4+yr) 
tests of high gain shock 
ignition @ <1MJ

• Gain/yield ~60/30MJ @ 
0.5MJ drive

• Req’d NIF hardware?

• Longer term (≥6yr) tests 
of high yield shock 
ignition

• Gain/yield ≥100/100MJ 
@ ≥1MJ drive
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ablator-
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DT gas ~25- 
45atm

Be anti-mix 
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CH seal 
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32we have studied shock ignition designs:
• low-aspect (AR=2.5) foam/DT targets
• driven by 248 nm KrF light
• laser spot size is zoomed twice
• target mass varied by a scale factor of 32

(scale 1 = ~250 kJ - scale 32 = ~3 MJ targets)
• target adiabat is kept moderately low (α~2)

Overview: shock ignition targets designed for high gain with KrF



HiPER baseline target -- Shock-ignition 


Laser wavelength = 0.35 µm

Compression energy: 180 kJ

Focal spot: 0.64 mm (compression)

                   0.4   mm (SI)


Target: S. Atzeni, A. Schiavi and C. Bellei, PoP, 15, 14052702  (2007) 
Pulses: X. Ribeyre et al, PPCF 51, 015013 (2009);  
             S. Atzeni, A. Schaivi, A. Marocchino, PPCF (2011) 

Target: HiPER baseline target 



Gain curves for shock ignition look impressive but  
must assess the sensitivity to preheat (during the 
main pulse) and (for CH targets) to laser imprinting

TC9308
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Shock ignition: pros & issues


PROS

•  Implosion velocity smaller than for central ignition 


⇒ Lower intensity, smaller RTI growth => more room for direct-drive

⇒ Potentially higher gain


•  Ignition configuration: Non isobaric => higher gain (than central ignition)

•  Spherical targets


ISSUES, DESERVING EXPERIMENTS (@ NIF, Omega?)

•  Laser-plasma interaction at 1016 W/cm2: backscattering? Hot electrons?

•  Energy transport at above intensity

•  Shock propagation through perturbed materials


MEANWHILE: WHAT ABOUT ROBUSTNESS?
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2D High-resolution simulation (l=1-256)
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Ribeyre, Schurtz, Lafon, Galera, Weber, PPCF 51, 015013 (2009) 

The spike power and launching time are optimized
for HiPER shock ignition targets

HiPER shock ignition target



Symmetric 2-D DRACO simulations performed with 
similar targets indicate robustness to ice roughness 
>3.5-nm rms

TC9112

•	 Symmetric laser irradiation

•	 DRACO simulations with 
3.5-nm-rms roughness in 
modes , = 2 to 50

•	 Target ignites with full gain

•	 Upper limit on robustness to 
ice modes not yet explored

•	 Other nonuniformity studies 
to follow (imprint, target offset, 
polar drive, etc.)
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Ignitor-return shock collision seems to reduce the
deceleration RTI growth before ignition

Atzeni, Davies, Hallo, Honrubia, Maire, Olazabal, Feugeas, Ribeyre,
Schiavi, Schurtz, Breil, Nicolai, Nucl. Fusion 49, 055008 (2009)



  
Shock-ignition: sensitive to mispositioning


Gain = 95% of 1D gain


10 µm displacement 


Density maps when central Tion = 10 keV

(80 * 80 µm)


Gain = 1% of 1D gain


20 µm displacement 


S. Atzeni, A. Schiavi, A. Marocchino, PPCF 2011
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HiPER target


  Zooming required to reduce spike power


    Gaussian beams, width ws


      ws           min. spike power

400 µm 
 
150 TW

500 µm 
 
200 TW

640 µm 
 
270 TW




21/14

Dynamic repointing seems achievable on LMJ

R1

R2

⊥δx
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2θ

Centre des deux faisceaux

Axe du Quadruplet, Projection
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A paramount issue: Optimization of NIF polar drive symmetry and A paramount issue: Optimization of NIF polar drive symmetry and shock shock 
coupling efficiency at high convergence ratiocoupling efficiency at high convergence ratio

• 96-beams (main+shock) at r0 at t = 0;   96-beams (shock) zoomed at rshock at t = tshock
• Optimize pointing, focal spots and power phasing on each of 2x4/8 sets of quad/beam rings 

All-DT or CH/DT
~0.5MJ-drive, 

gain-60,  30MJ 
yield

(A) (B)

Example of split quad 
pointing for optimum 

beam uniformity
4 rings of quads split into 

2x4 rings of beams

(C)

Necessary for 
beam 

uniformity?



Shock ignition benefits from shorter λ
 

and zooming

Power
TW

Absorption
fraction

KrF
λ=248 nm 
with Zoom

Nd:glass
λ=351 nm
with Zoom

Nd:glass
λ=351 nm
no Zoom

Laser Energy 230 kJ 430 kJ 645 kJ
Yield 22 MJ 24 MJ 23 MJ

Gain 97 56 35
Peak compression 
intensity  (W/cm2)

1.55×1015 2.2×1015

Peak igniter 
intensity  (W/cm2)

1.6×1016 3.1×1016

1-D Hydrocode simulations
Fixed low aspect ratio pellet  

Significantly higher gain with 248 nm & zoom
Lower risk from laser plasma instability  



CH shells have been imploded on OMEGA to test
the performance of shock-ignition pulse shapes 
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The implosion was optimized with respect to the timing 
of the picket pulse with fixed spike timing

E16131

FSC
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Laser Plasma Instability limits the maximum intensity 
Can produce high energy electrons that preheat DT fuel
Can scatters laser beam, reducing drive efficiency
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LPI during the compression pulse?

Fast electrons can preheat the fuel and prevent compression.

Instabilities at the quarter critical surface often have the lowest intensity
threshold. E.g., the two plasmon (2ωpe) decay threshold is*:

Tkev
λµm Ld,µm

I15 ~ 80

This simple formula has (so far) been unreasonably effective in predicting the
intensity threshold of the occurrence of instability at nc/4 in a variety of experiments.

The impact of LPI will depend upon the number and energy of hot electrons
generated, which is still quite unknown.

A. Simon, R. Short, E.A. Williams, and T. DeWandre, Phys. Fluids 26, 3107 (1983);
B. Afeyan and E.A. Williams, Phys. Plasmas 4, 3788, 3803, 3827, & 3845 (1997).
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OMEGA experiments show high hot-electron signals  
for hydrogenic ablators

TC9309
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S t a b i l i t y : p r o j e c t e d e - f o l d s ( M A X )
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Effects of lower intensity: 2D simulations of higher
aspect ratio (AR) targets show greater growth of RT

density images at
shock ignitor
turn-on time
+ 200 psec

AR=2.47
Icomp = 1.8 x 1015

AR=3.75
Icomp = 6.7 x 1014

AR=4.28
Icomp = 5.6 x 1014

AR=3.11
Icomp = 9.4 x 1014

(Icomp = maximum intensity during compression pulse)



BBA STUD Pulses	
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A New Approach to LPI Control	



•  Instead of just phase control (in space-time) through masks and electro-
optic modulators, or the all purpose PS solution, it is worth exploring the 
intentional variation of the amplitude and duration of short bursts of laser 
light ==> STUD pulses: Spike Train of Uneven Duration or Delay.	



•  Use variable width spikes to last 4-8 growth times of the most unstable 
mode to be avoided, and then shut off the pump long enough to disallow 
self-organization of plasma into coherent large amplitude waves which can 
then do real damage, and then repeat.	



•  Divide and conquer the laser’s propensity to whip the entire plasma up 
into a coherent pump driven LPI haven. Start and stop the interaction 
processes to avoid cumulative damage. Three main reasons you win 
with STUD pulses: Don’t allow growth in entire hot spot, avoid hitting the 
same driven wave by the same or similar hot spot over and over again, 
damp the wave between recurrence of hot spots to the same location as 
previously driven waves.	





Summary

TC9306

FSC

•	 We have a good understanding of the linear stage of TPD

• 	Most hot e– are produced only in the nonlinear stage of TPD

• 	Forward hot e– (>50-keV) flux from plane-wave, 2-D PIC 
	 is >10× that of experiment measurements

	 	 – 	how to account for 3-D effects like speckles?

		  – 	LPI and hydro are difficult to decouple



Hot electrons of moderate energies produced during
the shock spike can be beneficial to shock ignition

TC7870

Hot e– with Maxwellian Thot = 150 keV, Ehot = 17% of spike 
energy, treated using a multigroup diffusion model*
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*J. Detettrez and E. B. Goldman, LLE, Univ. of Rochester, Rochester, NY, LLE Report No. 36 (1976).
Also see K. S. Anderson (this conference).



A laser–plasma interaction experiment was performed  
in planar geometry with overlapping beams

TC9067a
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Up to 6% of the high-intensity laser energy is converted 
into hot electrons

TC9069a

•	 The measured hot-electron temperature is 3× higher 
than in spherical geometry

•	 >150-keV electrons can be detrimental to target performance
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1-D PIC simulations at SI-spike relevant intensities show
low-temperature hot electrons with an energetic tail

TC9307

FSC

O. Klimo et al., Plasma Phys. Control. Fusion 52, 055013 (2010).
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Up to 35% of the shock-beam laser energy  
is lost due to backscatter; Thot ~ 45 keV

E18435b

•	 No measurable signal of  
the 3/2 harmonic 

• 	 SRS dominates back reflection  
at highest intensity 

• 	 SBS reflection is relatively  
stable at ~10%

FSC

C. Stoeckl et al., Bull. Am. Phys. Soc. 54, 265 (2009).
W. Theobald et al., Plasma Phys. Control. Fusion 51, 124052 (2009).



Pressure
deduced from
shock
breakout
chronometry

Al step   Al base   CH foil

10 µm 25 µm 25 µm
Pre pulse 1ω at 2 1013 W/cm2
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strong
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Backscattered light

Hot electrons
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 Back scattering: calorimetry
Results at the Omega
facility (Usa, 2009) give
33% back reflection at I
≈ 8 1015 W/cm2

A surprisingly small fraction of
light is backscattered in our
experimenal conditions (I ≈ 1016

W/cm2, λ = 0.44 µm)

 WORK IN PROGRESS…
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Full implementation of NIF polar drive will require five Full implementation of NIF polar drive will require five 
hardware upgrades for a (cryo) ignition demonstrationhardware upgrades for a (cryo) ignition demonstration

7

R.McCrory, D.Meyerhofer, National Academy ICF 
Target Panel, Washington DC 2/16/11



A surrogate CH target is proposed to test the 24-quad 
compression phase

TC9030
Run 1266

•	 Objectives of the initial experiment
		  –	 diagnose the implosion uniformity
		  –	 measure the speed of the imploding shell
	 	 –	 diagnose any hot electrons from the two-plasmon instability
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The center of mass radius is uniform to 8.1 nm (rms) 
when averaged over the sphere

TC9036
Run 1266
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Beam-pointing schemes are being explored  
for polar-drive shock ignition on the NIF

TC8792b

•	 Focusing separate shock beams at a smaller radius late in time  
allows for better coupling of energy to the target

• 	A scheme with split quads would allow for best irradiation uniformity  
on target, but requires time-consuming “rewiring” of NIF seed pulses

• 	Another scheme employing  
full quads—half for the main  
drive and half for the shock  
pulse—was recently proposed*  
by Steve Craxton

Lower set of
24 NIF quads

Focused at r0
 • 24 quads

Focused at rshock
 • 24 quads

FSC

R. S. Craxton et al., Bull. Am. Phys. Soc. 55, 26 (2010).



Primary Action Items focused on Target Design and
understanding the effects of LPI on target performance

TC9303

Target Design

	 • 	Design a proof-of-principal, low-risk, low-gain SI experiment

	 • 	Determine if a planar I15, 300-MB shock experiment is possible

	 • 	Determine how we can get more energy into the spike pulse

	 • 	Design initial experiments for the NIF

LPI and the THING (2~p threshold)

	 • 	Determine experimental platform to identify and mitigate preheat 
	 during the fuel-assembly phase

	 • 	Determine experimental platform to identify if single beam 
	 versus overlapped beams mitigate spike-pulse preheat

	 • 	Review STUD pulse experimental results from Trident

Summary/Conclusions



Direct Drive w or w/o Shock Ignition 
Also Requires LPI Control	



BBA STUD Pulses	
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• If we do not keep the growth of parametric instabilities under strict control during the	


   main pulse, then the hot electron preheat will make the final shock have dubious prospects.	



• Worry about SRS and 2p as the two most likely hot electron generating instabilities 	


   via their plasma waves daughter waves. ���

• Worry about the physics of multiple of massively overlapping beams, hot spots overlapping,	


   triggering each other’s instabilities, nonlocal influences in space, mediated by hot electrons,    	


   secondary instabilities, SRS/SBS anti-correlation, ...	



• This is not your grandfather’s LPI scenario.	



• For shock ignition, need to convert the right distribution of hot e-s into a sharp heat front that 	


   becomes that last shock, quickly assembled. Designing this is a wonderful challenge of our  	


   knowledge of LPI physics. 	



• What wavelength to use for the last shock, what pulse shape, what intensity regime, all remain 	


   open and exciting questions. 	





Late shocks can suppress rarefaction waves— 
there are three ways shocks can be launched

TC9191 R. Nora and R. Betti, submitted to Phys. Plasmas.

FSC

No-rarefaction
technique
(requires many
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Plastic-ablator shock-ignition targets are robust to shock 
timing and reduced clean volumes

TC9110

ITF for indirect-drive point design* 
is ~5.3 (MYOC = 33%) at 1 MJ.
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*J. Lindl, presented to the JASON Review Committee Study 
#JSR-09-330, San Diego, CA, 14–16 January 2009.



1-D hydrodynamic simulations predict an initial plasma
pressure of ~100 Mbar for ~1 × 1015 W/cm2

TC9072a

•	 The spike absorption is varied to match the shock-breakout time

• 	 2-D DRACO simulations are currently being performed

FSC
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The CH shell implodes uniformly throughout  
the 4-ns laser pulse

TC9032
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Shock-ignition: reduced hot spot-RTI growth 


No SI spike


Shock ignition


perturbation growth halts 

@ shock collision


with the 
CELIA


rradiation

spectrum


S. Atzeni, A. Schiavi, A. Marocchino, PPCF 2011.; confirms results by Ribeyre et al. PPCF 2009 




NRL
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The plastic-ablator SI design is robust to hot electrons  
up to 100 keV at 60% of laser energy during  
the spike pulse

TC9111

•	 Straight line hot-electron-transport 
model by A. A. Solodov

•	 Future work will investigate  
hot-electron transport during  
the main pulse 

FSC
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Bates, Schmitt, Fyfe, Obenschain, Zalesak, High Energy Den Phys 6, 128 (2010)

Comprehensive 2D simulations of SI KrF targets, with
zooming are carried out by the NRL group

GAIN=103
EL = 398kJ



FSC

Preliminary DRACO polar-drive shock-ignition simulations 
indicate reasonable uniformity, but refinements are needed

TC9305

Laser-imprint studies are also in progress.
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Laser Plasma Interactions: Late time SRS generated by the shock Laser Plasma Interactions: Late time SRS generated by the shock 
is probably benign and may be beneficial to the shock driveis probably benign and may be beneficial to the shock drive

- Early time 2ωp hot electrons are main concern (near-term experiments?)
- SRS/2ωp hot electrons generated by high intensity shock may:

•

 

(will) be absorbed in outside of dense converging shell
•

 

improve the ablation process?
•

 

provide good ablative stabilization ?
•

 

contribute to symmetric shock drive by long mfp smoothing?
•

 

permit effective drive at 2� (green)?
- Efficiency, symmetry and stability of shock coupling is a paramount 
research issue (near-term experiments?)
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