

Gamma-Ray Spectroscopy 2011 OMEGA Laser Users' Group Workshop APS Briefing Nov 15, 2011

H.W. Herrmann

Los Alamos National Laboratory

Los Alamos and Lawrence Livermore National Laboratories – National Ignition Campaign

This work performed under the auspices of the U.S. DOE by Los Alamos and Lawrence Livermore National Laboratories under Contracts DE-AC52-06NA25396 and DE-AC52-07NA27344

LA-UR 10-07461

The S-Ray Spectrum at NIF is complicated, but holds a wealth of information

Gamma-Ray Spectroscopy

- Gas Cherenkov Detectors are currently being used at OMEGA to perform energy-thresholded **▼**-ray spectroscopy in the 3-20 MeV range
 - DT Fusion 🖾-ray spectrum has been mapped out (C. Horsfield NO6-10)

 - ¹²C(n,n' 𝔅) is being used to infer CH ablator 𝔅R (N. Hoffman CO8.10, H. Herrmann NO6.9)
- However, a true energy-resolving **x** -ray spectrometer could be used for much more to support NIC, such as:
 - D(n, 🗷) at 15.6 MeV 🖾 🛣 fuel 🖾 R diagnostic
 - ¹²C(n, 🕅) at 17.9 MeV 🕅 🕅 CH ablator 🕅 R diagnostic
 - HT fusion II-ray at 19.8 MeV II Hot Spot H/D ratio in THD
- And for general Nuclear Plasma Science:

 - Measure nuclear cross-sections on materials placed in extreme neutron flux (e.g,. pucks of known XR)
 - Ablator dopants for S-process or possibly as mix indicators
 - Stellar-like environment provides excited state nuclei

р

Gamma-Ray Compton Spectrometer

- Recommendations of the 2nd OLUG Meeting:
 - "The community felt that a new gamma-ray spectrometer needs to be designed, validated and commissioned for the facility. Users requested that the spectrometer have a spectral range up to 20 MeV."
- Design study underway in conjunction with LANL, LLNL, GA & NSTec

Backup Slides

UNCLASSIFIED

Reactions emitting gammas sensitive to stopping power with $s_q > 10 \text{ mb/sr/gamma-ray}$

Energetic g-rays as Probes of Mixing and Stopping Powers at NIF (A. Hayes, LANL)

MeV alpha-particles born in the DT burn and MeV knockon deuterons and tritons interacting with ablator material (C or Be)

reaction	Eg(MeV)
$^{13}C(d,n)^{14}N*$	3.94, 4.91, 5.1, 5.69, 7.0, 8.06
$^{9}\text{Be}(d,n)^{10}\text{B*}$	2.8, 3.4, 4.49, 6.03
${}^{9}\text{Be}(a,n){}^{12}\text{C*}$	4.4

Shape of K.O. fluence determined by stopping => g-ray yields can determine form of stopping

UNCLASSIFIED

Studies of the HD reaction: Next step in HEDP laboratory nuclear astrophysics

Alex Zylstra

3rd OMEGA Laser User's Group Workshop Rochester, NY, April 27-29 2011

The astrophysical S-factor for the HD reaction is poorly know at low energies

Data obtained in accelerator experiments differ by a factor of ~3 at energies relevant to ICF; accelerator data must also be corrected for electron screening effects using unreliable nuclear models.

1: C. Angulo et al., Nucl. Phys. A, 656 (1999).

D?L(

Most of the heaviest elements (A>56) are made via "slow" neutron capture (s-process) in the cores of massive stars

L. Bernstein, LLNL

Many important^{*} s-process branch point nuclei have HEDP-populated low-lying excited states

Branch Point	Gnd State J ^π	1 <u>st</u> Exc. State E _x (keV)	1 <u>st</u> Exc. State J ^π
⁷⁹ Se	7/2+	95.77	1/2-
⁸⁵ Kr	9/2+	304.871	1/2-
¹⁴⁷ Pm	7/2+	91.1	5/2+
¹⁵¹ Sm	5/2-	4.821	3/2-
¹⁶³ Ho	7/2-	100.03	9/2 -
¹⁷⁰ Tm	1-	38.7139	2-
¹⁷¹ Tm	1/2+	5.0361	3/2+
¹⁷⁹ Ta	7/2+	30.7	9/2+
²⁰⁴ Tl	2-	414.1	4-
²⁰⁵ Pb	5/2-	703.3	7/2-
185W	3/2-	23.547	1/2-

NIF (or LMJ) are the *only* places where (n, **⋈**) might be measured on ground+excited states

L. Bernstein, LLNL

Gamma spectrum at NIF provides a wealth of information

Gamma-ray energy (MeV)

- GRH is useful to infer spectral information, but better resolution is required.

UNCLASSIFIED Y. Kim, LANL

Gamma Compton Spectrometer (GCS) Design

NIF GCS design goals:

- broad-energy-range (1-20 MeV)
- high sensitivity (NIF Yields > 10¹⁴ DT-n to isolate HTg)
- modest energy resolution (1-2 MeV)
- modest temporal resolution (~1 ns)
- high signal to background ratio

Preliminary Concept:

- electromagnet & detector array attached outside NIF chamber.
- two modes of operation:
 - 1) Chamber-mounted converter foil for high-yield (> 10¹⁶ DT-n)
 - 2) DIM-mounted converter foil & electron optics for low-yield (<10¹⁶ DT-n).

UNCLASSIFIED

Slide 12

GRH is useful as a 4-channel, energy-thresholded spectrometer. However, a true energy-resolving spectrometer is highly desired.

- Prompt" rays of interest from indirectly-driven, THD:

 - 4.44 MeV ¹²C(n,n') **⊮**-ray
 ≻Ablator rhoR
 - Hohlraum/TMP n-X
 continuum
 - Effective n-to-g convertor for low yield BT determination

LANL built WHEBY 25 years ago. Design and Calibration data is still useful to GCS

WHEBY 10-24

Components	Parameters	Data
Design goal	Energy range (MeV)	10-24
	Momentum resolution (%)	1-2
	Time resolution (ps)	100
Magnet	B-field (G)	2400, uniform
	Size (cm)	5726213
	Weight (lbs)	300
Converter	Material	Ве
	Diameter (cm)	0.8
	Thickness (cm)	0.2
Detector	Photoconductive	GaAs
UNCLASSIFIED	Y. Kim, LANL	Slide 14
	T. Hilsabeck. GA	NNS ®

NIF needs a Total DT Yield measurement during high rhoR implosions

- Existing yield measurements compromised by:
 - Yn: neutron downscattering
 - GRH: presence of HT-I
- $DT\mathbb{W}_0$ -rays could provide Total DT yield (= $Y_{DT\mathbb{W}_0}/BR_{\mathbb{W}_0}$)
 - Negligible DT-W down-scattering (unlike DT-n)
 - Either need to know BR & have a good absolute calibration
 - Or, perform in-situ calibrations using DT Expl Pshr (R R
 0)

TDSF =
$$1 - \frac{Y_{DT_n}(13 - 15 \text{ MeV})}{Y_{DT_{\gamma 0}} / BR_{\gamma 0}}$$

UNCLASSIFIED

Slide 15

Separation of DT- \mathbb{W}_0 and DT- \mathbb{W}_1 resolves 5He nuclear status issue and impacts on BR \mathbb{W}

GRH is a 4-channel, Time-resolved, Energy-thresholded, Gamma-Ray Spectrometer

- "Prompt" -rays of interest from indirectly-driven, THD:
 - 19.8 MeV HT fusion **I** ray
 - 16.75 MeV DT fusion I ray
- Relative abundances inferred from multiple threshold measurements on each shot

 - This is why we need a threshold detector !
 - >90% of GRH signal is from fusion
 Tays at 10 MeV threshold

UNCL

Outline

• Why do we need GCS?

How it works?

- Review of LANL's previous WHEBY
- Broad-energy GCS

Technical challenges at NIF

- Shielding against hard radiation background
- Improving detector sensitivity

Summary

UNCLASSIFIED

Slide 18

WHEBY 10-24

- Design ideas from previous work
 - clean-up magnet
 - collimator made of graphite
 - 🕅 beam dump
 - vacuum box
 - calibration data

Magnet Size would need to get Bigger to catch Low Energy Gamma

Electromagnet is the way to have broad-energy range with a compact system

Outline

• Why do we need GCS?

How it works?

- Review of LANL's WHEBY
- Broad-energy GCS

Technical challenges at NIF

- Shielding against hard radiation background
- Improving detector sensitivity

Summary

UNCLASSIFIED

Slide 22

Technical Challenges: Indirect-drive creates a challenging hard x-ray background for close-in detectors

- ~100 kJ Hard x-rays from LPIinduced, hot-electron Bremsstrahlung
 - ~1e7x more energy than the ~10 mJ of DT fusion gamma-ray energy from a 1e14 DTn shot
- Ave Energy ~50 keV, but extends up to ~MeV
- Significant shielding needed!

Shielding requirement & NIF interference will be reduced by locating GCS outside target chamber

UNCLASSIFIED

11th International Conference on Radiation Shielding Hesham Khater, Sandra Brereton, and Mike Singh LLNL-PRES-402778 April 17, 2008

Estimated Sensitivity at 1.5 MeV Resolution = Yn ~ 5 10¹⁵

- Minimum neutron yield (Yn_min) estimation

$$Y_{n_{min}} \cdot BR_{\gamma} \cdot \Omega \cdot \eta_{\gamma e}(\psi, t_c) \cdot \eta_{mag} = 100$$
 electrons

Branching ratio [BR _∭]	5e-5	
Solid angle[🕅]	5e-7	Converter diameter =1.7 cm, distance from TCC = 600 cm
Image: Second state of the second state of	1e-3	Converter thickness = 1 cm
Magnet efficiency[🕅 mag]	0.8	
Min Yield[Yn_min]	5e15	

UNCLASSIFIED

Slide 24

If we place magnet outside chamber, how can we improve efficiency? Converter & focusing device in close to target can improve detector sensitivity

Summary

- We need GCS to support NIC and beyond, e.g., gamma-based yield measurement
- Using existing WHEBY knowledge, design & calibration work previously demonstrated.
- Electromagnet design enables energy ranges of 1-20 MeV
- NIF background shielding will be simplified by locating magnet outside chamber
 - Detection efficiency may require enhancement
 - Converter & focusing device in close to target can improve detector sensitivity

LOS Alamos
 NATIONAL LABORATORY
 EST. 1943

UNCLASSIFIED

