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Tuning Low-Adiabat 
Cryogenic Implosions on OMEGA
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Modeling of cryogenic implosions on OMEGA  
is approaching precision required for ignition

TC9268

Summary

•	 The majority of the observables are consistent with calculations when 
the nonlocal thermal transport is used and the effect of cross-beam 
energy transfer is taken into account in the laser-deposition modeling

•	 Areal densities measured in cryogenic implosions are in agreement 
with 1-D predictions

•	 At current levels of nonuniformity sources (offset, ice roughness, 
condensables, ablator finish), measured ion temperature is lower than 
1-D calculation by ~20% and yield is ~5% to 10% of 1-D predictions

•	 With improved nonuniformity, cryogenic implosions on OMEGA  
are predicted to achieve YOC ~15% to 20% with GTiH ~90%GTiH1-D



Ignition condition depends on fuel areal density,  
ion temperature, and yield

TC9011a

One of the main goals of the cryogenic campaign on OMEGA 
is to validate modeling of GtRH, GTiH, and yield.

1S. Haan et al., “Point Design Targets, Specifications, and Requirements for the 2010
  Ignition Campaign on the National Ignition Facility,” submitted to Phys. Plasmas
2R. Betti et al., Phys. Plasmas 17, 058102 (2010).

•	 Minimum shell kinetic energy required for ignition1

•	 Threshold factor2—measured conditions at neutron-production time
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Low-adiabat cryogenic implosions on OMEGA are driven 
using a = 2.0 and a = 2.5 target designs
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Measured areal density is determined by in-flight shell 
adiabat, laser coupling, and neutron sampling

TC9269

Areal Density

*C. D. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007).

•	 Maximum areal density in a DT implosion*

•	 This is the absolute maximum in areal density assuming 
perfectly tuned implosion and

–	 thin plastic overcoat (“all-DT” design)

–	 laser is deposited due to inverse bremsstrahlung 
(no hot e– or other LPI)

–	 flux-limited thermal transport with f = 0.06

–	 no coasting phase
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Coasting phase leads to a reduced areal density
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Shell decompresses during coasting phase

TC8272

Areal Density

Laser

Return shock

No coasting phase

Time, radius

With coasting

•	 Return shock sets the shell on higher adiabat (astag) if shell density 
is lower, leading to lower peak tR

•	 In-flight density is reduced by coasting phase or higher in-flight a

–	 in-flight adiabat is set by shocks launched at the beginning of drive

–	 duration of coasting phase is determined by drive efficiency



Measured areal density is determined by in-flight shell 
adiabat, laser coupling, and neutron sampling

TC9273

Areal Density

Timing and width of dn/dt relative to tR curve depends 
on 3-D effects, laser coupling, adiabat, etc.
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In-flight shell adiabat is tuned using VISAR shock- 
velocity measurements with cone targets  
(important success story for LLE)
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The nonlocal transport model* is used  
to simulate shock-velocity data

TC9275

Areal Density

*V. N. Goncharov et al., Phys. Plasmas 15, 056310 (2008).
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Simulations reproduce shock-velocity data very well 
for a variety of picket energies and picket timings
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Accuracy in shock-velocity prediction meets 
the ignition requirement.

Areal Density

10-nm-thick CD shell
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Velocities up to 135 nm/ns were measured for the shock 
launched by the main pulse
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To account for shell decompression during coasting, 
laser coupling must be accurately modeled

TC9279

Areal Density

•	 NTD timing

–	 PROs 
	 -	 sensitive to small variations in implosion velocity

–	 CONs 
	 -	 time-integrated effect, not a unique shell-velocity solution

•	 Scattered-light measurement

–	 PROs 
	 -	 time-resolved measurement

–	 CONs
-	 not all absorbed light contributes to the drive— 

not a direct measurement of hydro-efficiency

Diagnostics to verify hydrodynamic efficiency (Ek, shell/Elaser)



The measured bang time is later than predictions for 
both designs 
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Scattered light measurements show a reduced laser 
energy absorption 
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Beam-to-beam energy transfer leads to a reduction  
in laser coupling1

TC8901b

M = 1

Ray 2
Ray 1

Interaction
region

Ablation
plasma
flow 

The transfer of energy from (1) to (2) is due to SBS before deposition2

	 1	I. V. Igumenshchev et al., “Cross-Beam Energy Transfer 
		 in ICF Implosions on OMEGA,” submitted to Phys. Plasmas.
	 2	C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).
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Combination of cross-beam transfer and nonlocal 
model reproduce bang time measurements 
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Combination of cross-beam transfer and nonlocal 
model reproduce scattered light measurements 
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Deviations in scattered-light data from predictions at late 
time correlate with excitation of TPD instability
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Magnet
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E18155i

J. A. Frenje et al., NIF MRS System Design Review (April 2006). 
J. A. Frenje et al., Rev. Sci. Instrum. 79, 10E502 (2008).

Areal density in a cryogenic-DT implosion is measured 
using a magnetic recoil spectrometer

Areal Density



Areal density in a single-view MRS measurement 
is averaged over solid angle X á 3/2r
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Areal Density

imax = 62°, 80°
En = 13 MeV

imin = 23°, 29°
En = 13 MeV
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Offset > 10 nm or ice roughness with v, # 2  > 1 nm 
makes tR measurement direction-dependent

TC9289
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The measured areal density in triple-picket cryogenic 
implosions agrees with predictions

TC9290

Areal Density

The areal-density measurements confirm accuracy of shock 
tuning and shell stability to short-wavelength perturbations.
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5-mm-thick CD shells are considered to take advantage 
of higher hydrodynamic efficiency of DT ablator 
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• Thermal conduction ~1/Z            DT is more efficient ablator  



Predicted and measured scattered light power disagree 
after CD burns through 
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2wp parameter is larger for DT ablator because of lower 
Te and higher intensity at n=nc/4 
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Simulations predict higher perturbation growth at CD-
DT interface for thin-CD ablators* 

* I. Igumenshchev, APS 2010 



Simulations predict higher perturbation growth at CD-
DT interface for thin-CD ablators 



Modeling of cryogenic implosions on OMEGA  
is approaching precision required for ignition

TC9268

Summary/Conclusions

•	 The majority of the observables are consistent with calculations when 
the nonlocal thermal transport is used and the effect of cross-beam 
energy transfer is taken into account in the laser-deposition modeling

•	 Areal densities measured in cryogenic implosions are in agreement 
with 1-D predictions

•	 At current levels of nonuniformity sources (offset, ice roughness, 
condensables, ablator finish), measured ion temperature is lower than 
1-D calculation by ~20% and yield is ~5% to 10% of 1-D predictions

•	 With improved nonuniformity, cryogenic implosions on OMEGA  
are predicted to achieve YOC ~15% to 20% with GTiH ~90%GTiH1-D



With the best smoothing, the measured ion temperature  
is ~20% lower than the predicted value
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Ion Temperature and Yield
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Ion temperature is inferred from the temporal width  
of neutron time of flight (nTOF)

TC9292 *T. J. Murphy et al., Rev. Sci. Instrum 86, 610 (1997).
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Flow with spherical symmetry  
leads to spectral broadening

TC9294
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Temperature gradient inside the hot spot  
leads to a reduction in GTHfit with respect to GTHn
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Radial flow leads to an increase  
in GTHfit with respect to GTHn

TC9297

Ion Temperature and Yield

•	 Effect of the flow is reduced because the peak in dn/dt 
is close to stagnation

•	 Effect of flow is stronger for implosions with large offset
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For a typical low-adiabat cryogenic implosion  
with small offset GTHfit ~ 95% GTiHn

TC9298
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Ion temperature and yield are reduced  
because of hot-spot distortion growth

TC9024a
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For a typical low-adiabat cryogenic implosion  
with small offset GTHfit ~ 95% GTiHn

TC9299
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Moderate-size amplitude of , = 2 increases 
effective hot-spot region

TC9300

Ion Temperature and Yield

R. Kishony and D. Shvarts, Phys. Plasmas 8, 4925 (2001).

Bubble on axis



As the hot-spot deformations grow, effective volume 
reduction caused by short wavelengths compete with 
volume increase because of , = 2 growth
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Increased hot-spot volume caused by , = 2 
broadens the neutron rate
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