

Proton probing of a 1 kJ, 10 ps laser pulse interaction with underdense to near-critical density plasma

L Willingale, A Maksimchuk, K Krushelnick (University of Michigan) PM Nilson, S Craxton, TC Sangster, C Stoeckl (LLE) W Nazarov (University of St Andrews) J Cobble (LANL) PA Norreys, R Scott (CLF, RAL)

Michigan Engineering

Proton probing

Proton source and propagation

M Borghesi *et al*, Rev Sci Inst, 74, 1688 (2003) M Borghesi *et al*, Laser and Part Beams, 20, 269 (2002)

Copper or gold target 50 µm x 2 mm x 2 mm

Magnification \approx (d₁ + d₂) / d₁

Proton probing with Omega EP

Proton beam detection

- Each film in the stack corresponds to a well defined proton energy
- High energy protons are traveling fast → arrive earlier
- Low energy protons are traveling slower → arrive later
- Proton images for a 'movie' of the interaction

Temporal imaging window = 73 ps

Film layer	Proton energy (MeV)	time to reach interaction (ps)	temporal spacing (ps)
1	9	121.19	
2	10.6	111.82	9.4
3	12	105.21	6.6
4	13.4	99.67	5.5
5	15.2	93.71	6.0
6	17	88.74	5.0
7	18.6	84.94	3.8
8	20.6	80.84	4.1
9	22.4	77.63	3.2
10	25.1	73.49	4.1
11	29.5	68.02	5.5
12	33.5	64.03	4.0
13	40.3	58.68	5.3
14	46.3	55.00	3.7
15	54.6	50.96	4.0
16	61.9	48.12	2.8

Temporal considerations

- Relative short-pulse beam timings in Omega EP are assessed using UFXRSC (Ultra-Fast X-Ray Streak Camera)
- Relative long to short pulse timings can be assessed using PJX and XMON
- Protons take some time to travel from the source foil to the interaction (i.e. proton generation laser pulse needs to arrive before the main interaction)
- Jitter between backlighter and sidelighter pulses (due to different seed pulses) appears to be ≈ ± 20 ps
 - Can be largely absorbed by the large temporal window of the film pack (73 ps)

Near-critical density plasma

Michigan Engineering

Near-critical density plasma

1.5n_c plasma