Compact DD-neutron detector for OMEGA and the NIF

Fredrick Séguin, MIT, for the NIC team

1

OVERVIEW

- A compact, CR39-based detector for DD-neutrons has been designed for use in ICF experiments
- It is integrated into the assembly used for compact proton spectrometers so they can be used simultaneously at multiple positions in the target chamber
- The detector has been calibrated and characterized on the MIT Cockroft-Walton accelerator
- Neutron yield measurements were made during the 1st NIF campaign (in 2009).
- Future developments will include neutron spectrometry and DT-neutron detection

The detector is based on the response of CR-39 to protons elastically scattered by neutrons

The detector is assembled in a modular package along with a WRF proton spectrometer

Use of C₂H₄ converter with background subtraction results in increased yield accuracy, especially at low yields

- More tracks from converter improves statistics
- Background subtraction "cancels" intrinsic noise

The relationship between incident neutron fluence and CR39 track density was calibrated with the MIT CW accelerator

* For scattered neutrons, predicted by MCNP & weighted by direction (p.8) and energy (p. 12).

Accelerator data and the calibration are self consistent over a wide range of fluences, vacuum conditions

The detector is directional

Key detector performance characteristics

- **Passive** (no sensitivity to EMP, x or γ rays, 1/3- μ m or unconverted light)
- **Compact** (~ 6 cm module size, even with addition of a proton spectrometer)
- Multiple modules can be used at different positions simultaneously
- Directional
- Redundancy (3 pieces of CR39 per module)
- Wide dynamic range:

Fluence ~ $10^{5} - 10^{8}$ DDn cm⁻²

 $Y_{DDn} \sim 10^9 - 10^{12}$ at 30 cm; $10^{11} - 10^{14}$ at 300 cm

- Unaffected by long vacuum exposure
- Slow turnaround (Minimum 9 hours to etch, scan, analyze)
- No half-life issues

¹⁰In the fall of 2009, detector modules were fielded on the NIF during low-yield shots

CR39-based neutron detectors provided an independent measurement of NIF DD-neutron yields

Spectrometry may be possible, using a C₂H₄ step filter

12

A similar approach is being developed for DT neutrons

See the next poster by Mario Manuel.