
1 Observation and characterization of 
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2 15-MeV-proton radiography has demonstrated 
that filaments are endemic in direct-drive implosions 
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Summary:

1. Radial striations in the images correspond to

• Current filaments (~ 2 kA toward capsule) 
Surrounded by B 10 T• Surrounded by B ~ 10 T

• With separation near critical surface   100 µm

2.  The filaments and fields

• Appear during the laser pulse – could affect drive efficiency
• Expand with the corona, with features frozen in for hundreds of ps
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6 Radiographs were made of solid CH targets (860-µm diam.)
driven with two different laser intensities
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Each shot has images from different particles 

that sample fields at different times

1-D corona 
Individual filaments and  
features persist
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8 E fields could cause image striations
3 MeV proton image3-MeV-proton image
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3 MeV proton image

B fields could cause image striations
3-MeV-proton image
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10 Light striations appearing “in front of” dark ones 
makes B more natural than E
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11 Deflections due to E and B fields scale differently with 
the energy, mass and charge of the imaging particle 
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• If we could accurately measure deflection angles for a filament with 
different imaging particles, we could see whether they scaled accordingdifferent imaging particles, we could see whether they scaled according 
to E or B.

• This is very difficult, because y
- The deflections are small and hard to quantify, 

especially for 15-MeV protons. 
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For small deflection angles, a similar scaling applies 

to measured image modulation due to filaments

Define an image region containing filaments 
but not stalk or capsule.     
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Scaling tests show that image striations are caused by B

If B : If E :
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The wavelength (filament-to-filament separation) 
can be estimated by comparison with simulations

Data
Monte-Carlo simulation 

f 200 fil t 4Data for 200 filaments over 4π

~ 200 filaments distributed over 4π
means 100-µm separation at the capsule surface
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Field strength and filament current can be estimated from 
striation widths in the lowest-energy imagesstriation widths in the lowest-energy images 

Half width gives a measureHalf width gives a measure 
of deflection angle
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B ~ 10 T
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Filaments appear to extend inward to the ablation surface

But we can’t prove thatp
from the images



17 This is the resulting picture of filament structure 
at ~1 ns for laser intensity 6 x 1014 W/cm2
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