Observation and characterization of coronal filamentation in direct-drive ICF

1

15-MeV-proton radiography has demonstrated that filaments are endemic in direct-drive implosions

*Rygg et. al, **Science** (2008)

Summary:

- 1. Radial striations in the images correspond to
 - Current filaments (~ 2 kA toward capsule)
 - Surrounded by *B* ~ 10 T
 - With separation near critical surface $\approx 100 \ \mu m$

- 2. The filaments and fields
 - Appear during the laser pulse could affect drive efficiency
 - Expand with the corona, with features frozen in for hundreds of ps

Collaborators

MIT

- C.K. Li
 - J. Frenje
 - M. Manuel
 - H. Rinderknecht
 - N. Sinenian
- J.R. Rygg*
 - R. Petrasso

U of R – LLE

- R. Betti
- J. Delettrez
- J. Knauer
- F. Marshall
- D. Meyerhofer
- V. Smalyuk

*Currently at LLNL

Fredrick Séguin, MIT APS 2009

⁶ Radiographs were made of solid CH targets (860-µm diam.) driven with two different laser intensities

15-MeV p images

Each shot has images from different particles that sample fields at different times

E fields could cause image striations

B fields could cause image striations

¹⁰ Light striations appearing "in front of" dark ones makes *B* more natural than *E*

¹¹ Deflections due to *E* and *B* fields scale differently with the energy, mass and charge of the imaging particle

$$\Theta_{i,E} \propto \frac{q_i}{\varepsilon_i}$$
 $\Theta_{i,B} \propto \frac{q_i}{\sqrt{m_i \varepsilon_i}}$

- If we could accurately measure deflection angles for a filament with different imaging particles, we could see whether they scaled according to *E* or *B*.
- This is very difficult, because
 - The deflections are small and hard to quantify, especially for 15-MeV protons.

For small deflection angles, a similar scaling applies to measured image modulation due to filaments

Define an image region containing filaments but not stalk or capsule.

Define RMS image modulation due to filaments :

$$\Sigma \equiv \frac{\sqrt{\sigma_{total}^{2} - \sigma_{stats}^{2}}}{\langle fluence \rangle}$$

$$\underbrace{If B}: \qquad \Sigma_{i} \propto \frac{q_{i}}{\sqrt{m_{i}\varepsilon_{i}}} \sqrt{N_{fil}} \left| I_{fil} \right| \qquad \Box > \qquad \left| I_{fil} \right| \propto \left[\frac{\sqrt{m_{i}\varepsilon_{i}}}{q_{i}} \right] \Sigma_{i}$$

$$\underbrace{If E}: \qquad \Sigma_{i} \propto \frac{q_{i}}{\varepsilon_{i}} \sqrt{N_{fil}} \left| \lambda_{fil} \right| \qquad \Box > \qquad \left| \lambda_{fil} \right| \propto \left[\frac{\varepsilon_{i}}{q_{i}} \right] \Sigma_{i}$$

Scaling tests show that image striations are caused by **B**

The wavelength (filament-to-filament separation) can be estimated by comparison with simulations

Data

Monte-Carlo simulation for 200 filaments over 4π

~ 200 filaments distributed over 4π means 100-µm separation at the capsule surface

Field strength and filament current can be estimated from striation widths in the lowest-energy images

Half width gives a measure of deflection angle

$$\Theta_{i,B} = \frac{q_i}{\sqrt{2m_i\varepsilon_i}} \left| \int B \times d\ell \right|$$

B ~ 10 *T*

Filaments appear to extend inward to the ablation surface

This is the resulting picture of filament structure at ~1 ns for laser intensity 6 x 10¹⁴ W/cm²

