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15-MeV-proton radiography has demonstrated
that filaments are endemic in direct-drive implosions
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Summary:

1. Radial striations in the images correspond to

* Current filaments (~ 2 kA toward capsule)
 Surrounded by B~10T
» With separation near critical surface ~ 100 um

2. The filaments and fields

» Appear during the laser pulse — could affect drive efficiency
« Expand with the corona, with features frozen in for hundreds of ps
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° Radiographs were made of solid CH targets (860-um diam.)
driven with two different laser intensities
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Each shot has images from different particles
that sample fields at different times
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E fields could cause image striations
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B fields could cause image striations
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N Light striations appearing “in front of”’ dark ones
makes B more natural than E
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""" Deflections due to E and B fields scale differently with
the energy, mass and charge of the imaging particle

O, ¢ Oci ®, 5

» |If we could accurately measure deflection angles for a filament with
different imaging particles, we could see whether they scaled according

to E or B.

« This is very difficult, because
- The deflections are small and hard to quantify,

especially for 15-MeV protons.
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For small deflection angles, a similar scaling applies

to measured image modulation due to filaments

Define an image region containing filaments
but not stalk or capsule.
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Scaling tests show that image striations are caused by B
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b The wavelength (filament-to-filament separation)

can be estimated by comparison with simulations

Monte-Carlo simulation
for 200 filaments over 4T

~ 200 filaments distributed over 41T
means 100-um separation at the capsule surface
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Field strength and filament current can be estimated from
striation widths in the lowest-energy images

Half width gives a measure
of deflection angle
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Filaments appear to extend inward to the ablation surface

But we can’t prove that
from the images




This is the resulting picture of filament structure
at ~1 ns for laser intensity 6 x 1074 W/cm?

Hall
parameter

~1
electron
gyro orbit

wavelength at
ablation surface
~100 pm



