

Assessing target robustness and ignition performance for a direct drive ICF target

A. Schiavi

OLUG, Rochester, 2010

Collaborators in HiPER WP9

• S. Atzeni and A. Marocchino, Univ. of Rome

- M. Temporal, GIFI, Univ. Pol. of Madrid
- G. Schurtz, X. Riberye, L. Hallo, CELIA, Bordeaux

The road ahead...

Target positioning

Raytracing 3D

Parametric scan

Target mis-positioning at TCC

Irradiation geometry

J.-L. Feugeas and CELIA

		l-mode	
-	Perfect beam	12, 8, 10	
	Balance (10%)	1, 2, 12, 3	
	Pointing (5 mrad)	2, 3, 1, 4	
	centring (2%)	12, 2, 3, 1	

Energy balance 94%,

Illumination asymmetry σ_{rms} = 0.15 %

Main low I-modes : 12, 8 and 10 (< 0.004)

On the cone : 26 % of max intensity Inside the cone : 2% of max intensity

Target irradiation

1

Target irradiation

1

Incoming spectrum modification

Mode amplitude as a function of relative displacement

Target tolerance to rel. displacement

Density map at peak compression

0%

Density map at peak compression

0%

1%

Density map at peak compression

0%

1%

3D raytracing for studying irradiation patterns

HiPER 48 beams

Beamlets splitting M. Temporal et al, PoP 17 (2010)

Irradiation of the cone

M. Temporal et al, PoP 16 (2009)

1D parametric study of target implosion

DT ice density initial Temperature geometric dimensions

HiPER target

Physical model

Laser driver

DT ice density initial Temperature geometric dimensions

HiPER target

Physical model

Total energy Peak power Pulse shape

DT ice density initial Temperature geometric dimensions

HiPER target

Laser absorption Artificial viscosity THC flux limiter

Total energy Peak power Pulse shape

Main experimental parameters

Laser pulse scan

Parametric scan (rin,rout,rho,E)

"Dense" scan: $NV^{NP} = 11^4 = 14641$

"Dense" scan: $NV^{NP} = 11^4 = 14641$

Geometry, mass and total energy

varying just one parameter at a time

Geometry, mass and total energy

varying just one parameter at a time

Region of linear dependance

Peak rhoR varies linearly within: $\frac{10\%}{1\%}$ for E and rho for rin and rout

Sensitivity to artificial viscosity and THC flux limiter

Good news: 1D target implosion is rather insensitive to large variations in these two key numerical parameters

SOME NUMBERS

		Tolerance	
Target injection	lateral displacement at TCC	1-5%	10-50 µm
Target fabrication	DT ice density	10%	
Target Tabrication	inner/outer radius	1%	20 µm
	Total energy	10%	
Laser drive	Pulse shape accuracy (time)	1-5%	(30 ps)
	Pulse shape accuracy (power)	5%	

Straighten the path

- Identify key parameters for modeling
- Understand what are the crucial parameters for target fabrication and laser delivery
- Down-selection of parameters (metrics)
- Explore parameter space to assess compression robustness
- Find safety factors for parameters we can control
- Investigate gain sensitivity (ignition metrics for FI or SI)