Intense-Energy Coupling with Multikilojoule, 10-ps Pulses on OMEGA EP

Cu	foil:	50	0 :	×	50	0	×	20	μm ³
		1	kJ	, 1	0	р	S		

P. M. Nilson Fusion Science Center For Extreme States of Matter and Laboratory for Laser Energetics University of Rochester

Omega Laser Facility Users' Group Workshop Rochester, NY 28–30 April 2010

Summary

OMEGA EP experiments show strong energy coupling to relativistic electrons with up to 2.1-kJ, 10-ps pulses FSE

- The energy-conversion efficiency $\eta_{L \to e}$ into fast electrons is important for fast ignition and various HEDP applications
- Solid targets were irradiated over a wide range of laser parameters
 - laser intensity: $>10^{18}$ W/cm²
 - laser energy: 1 J to 2.1 kJ
 - laser-pulse duration: 1 to 10 ps
- The intense-energy-coupling efficiency into fast electrons $(\eta_{L \to e})$ is *independent* of laser energy and laser-pulse duration

(η_{L→e})_{min} = 20%±10%

Collaborators

FSC

R. Betti^{*+}, J. A. Delettrez, L. Gao, P. A. Jaanimagi, J. F. Myatt, T. C. Sangster, A. Solodov^{*}, C. Stoeckl, W. Theobald B. Yaakobi, and J. D. Zuegel

> University for Rochester Laboratory of Laser Energetics

A. J. MacKinnon and P. K. Patel

Lawrence Livermore National Laboratory Livermore, California

K. Akli

General Atomics, San Diego

L. Willingale and K. M. Krushelnick

CUOS, University of Michigan

^{*}Also Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics, University of Rochester.

[†]Also Mechanical Engineering and Physics Department, University of Rochester.

Fast-electron refluxing in mass-limited targets accesses high-temperature matter at solid density

Fast-electron "calorimeter"

 Refluxing is caused by Debye-sheath field effects^{1,2}

UR 火

- Majority of fast electrons are stopped in the target
- Efficient radiators
 - K_{α}, K_{β}
 - thermal radiation
- No fluor layers

¹S. P. Hatchett *et al.*, Phys. Plasmas <u>7</u>, 2076 (2000).

²R. A. Snavely et al., Phys. Rev. Lett. <u>85</u>, 2945 (2000).

³W. Theobald *et al.*, Phys. Plasmas <u>13</u>, 043102 (2006).

⁴J. Myatt et al., Phys. Plasmas <u>14</u>, 055301 (2007).

The fast-electron lifetime is governed by collisions with thermal electrons and adiabatic ion-front expansion

- 1-D energy relaxation model*
 - electron–electron collisions
 - adiabatic expansion cooling
- Initially cold, 20-μm-thick copper foil
- Fast-electron-energy loss causes heating to tens of electron volts

*H. Chen et al., Phys. Rev. E <u>76</u>, 056402 (2007).

Target-charging experiments were performed using ultrafast proton radiography FSE

Single-shot, multiframe imaging with few μ m/ps resolution.

A fast-electron jet provides the primary target-charging mechanism

Cu foil: 500 imes 500 imes 20 μ m³ 1 kJ, 10 ps

Energy transfer to target is isochoric.

The refluxing efficiency in small-mass targets is nearly perfect

- Laser intensities $I \sim 5 \times 10^{18} \, \text{W/cm}^2$
- Copper-foil targets
- Target volumes: 500 \times 500 \times 50 μm^3 to 75 \times 75 \times 5 μm^3

Strong heating in small-mass targets is inferred by K-photon suppression and energy shifts

- Inelastic electron–electron collisions heat the target
- Collisional ionization with the thermal background occurs
- L- and M-shell depletion at high bulk-electron temperatures causes spectral line shifts* and K_β/K_α suppression**

^{*} G. Gregori et al., Contrib. Plasma Phys. <u>45</u>, 284 (2005).

^{**} P. M. Nilson et al., Phys. Plasmas 15, 056308 (2008).

X-ray-emission spectra were obtained with 10-ps pulses and greater than 2 kJ of laser energy

LLE

FSC

Intense energy coupling to electrons is independent of laser energy and laser-pulse duration

Intense energy coupling to electrons is independent of laser energy and laser-pulse duration FSC

LLE

Summary/Conclusions

OMEGA EP experiments show strong energy coupling to relativistic electrons with up to 2.1-kJ, 10-ps pulses FSE

- The energy-conversion efficiency $\eta_{L \to e}$ into fast electrons is important for fast ignition and various HEDP applications
- Solid targets were irradiated over a wide range of laser parameters
 - laser intensity: $>10^{18}$ W/cm²
 - laser energy: 1 J to 2.1 kJ
 - laser-pulse duration: 1 to 10 ps
- The intense-energy-coupling efficiency into fast electrons $(\eta_{L \to e})$ is *independent* of laser energy and laser-pulse duration

(η_{L→e})_{min} = 20%±10%

Nuclear activation of copper-film stacks determines the energy spectrum of the forward-accelerated protons

- Positron emitter
- 63Cu (p,n) 63Zn
- Reaction-energy threshold: 4 to 6 MeV
- Half-life: tens of minutes
- 511-keV annihilation gamma rays
- Response matrix method to recover the proton-energy spectrum

Typically <5% of the laser energy is converted into fast protons*

M. I. K. Santala et al., Phys. Lett. 78, 19 (2001).

^{*}L. Gao et al., in preparation

1-D modeling suggests minimal electron-energy transfer to the expanding sheath field

- Peak intensity I = 7 × 10¹⁸ W/cm²
 10-ps (FWHM) Gaussian
- 20-μm-thick Cu target
 0.5-μm-thick 1-g/cc CH (C⁴⁺ and H⁺)
- CH layers are not depleted during the simulation
- In reality, contaminant layers could be easily depleted

Intense-energy transfer efficiency to ions ~ 0.1 $\eta_{L\rightarrow e}$

FSC

Motivation

FSC

HEPW laser-solid interactions generate powerful MeV electron sources

Laser-Driven Radiography^{1,2} Multikilojoule, 10 ps >10¹⁸ W/cm² High-Z converter High-Z

Efficient energy coupling to fast electrons with a 10-ps long pulse remains to be demonstrated.

UR 🔌

¹M. D. Perry et al., Rev. Sci. Instrum. <u>70</u>, 265 (1999).

²R. D. Edwards et al., Appl. Phys. Lett. <u>80</u>, 2129 (2002).

³M. Tabak et al., Phys. Plasmas 1, 1626 (1994).

⁴M. H. Key et al., Phys. Plasmas 5, 1966 (1998).

K-fluorescence within solid targets diagnoses intense-energy coupling to fast electrons

- Energetic electrons create K-shell vacancies (*E_k* ≈ 9 keV)
- K-shell emission comes from the cold bulk material during the fast-electron lifetime

UR

K. B. Wharton et al., Phys. Rev. Lett. <u>81</u>, 822 (1998).

R. B. Stephens et al., Phys. Rev. E <u>69</u>, 066414 (2004).

J. D. Hares et al., Phys. Rev. Lett. 42, 1216 (1979).

W. Theobald et al., Phys. Plasmas <u>13</u>, 043102 (2006).

Target bulk heating affects $L \rightarrow K$ and $M \rightarrow K$ electron transitions*

- Inelastic electron–electron collisions heat the target
- Collisional ionization with thermal background plasma occurs
- T_e > 100 eV causes significant M-shell depletion
- Target heating is inferred from ${\rm K}_{\beta}/{\rm K}_{\alpha}$

*J. Myatt *et al.*, Phys. Plasmas <u>14</u>, 056301 (2007). *G. Gregori *et al.*, Contrib. Plasma Phys. <u>45</u>, 284 (2005).

Sheath fields form at the surface of thin-foil targets in two distinct phases

• Escaping electrons

FSC

- rear-surface sheath field
- accelerates protons in forward direction
- Refluxing electrons
 - global target-sheath field
 - initial point-like energy deposition
 - accelerates protons into 4π
- Asymmetric collisionless expansion
 - forward direction: $\sim 0.2 c$
 - rear direction: $\sim 0.4~c$

UR

The effect of bulk-target heating on the K-shell-emission spectrum is observed with OMEGA EP

Time-resolved x-ray-emission measurements suggest energy coupling occurs over the whole duration of the incident drive FSE

X-ray-emission rise time correlates to the laser-pulse duration.

1-D LILAC calculations confirm target decompression is minimal over a 10-ps drive time

- 500 \times 500 \times 20- μ m³ Cu target
- 200 J of electron energy with $T_h = 1 \text{ MeV}$
- 10-ps energy-deposition phase (FWHM)

Thermal decompression dominates.

FSC

1-D LILAC calculations confirm target decompression is minimal over a 10-ps drive time

- $100 \times 100 \times 10$ - μ m³ Cu target
- 200 J of electron energy with $T_h = 1$ MeV
- 10-ps energy-deposition phase (FWHM)

Radiation cooling quenches the HED state in mass-limited targets prior to decompression.

The highest temperature plasmas are generated by reducing target area and thickness FSC

Target parameters study

- Vary thickness: 2 to 50 μ m
- Fix area: 500 \times 500 μ m²
- Vary area: 20 × 20 to 500 × 500 μm²
- Fix thickness: 2 μ m

Refluxing and energy deposition in small-mass targets is a volumetric effect.

For 1-ps pulses, K_{α} yields are consistent with an electron-refluxing model assuming $\eta_{L \to e} = 20\%$

 $\eta_{L \to e}$ is independent of the laser-pull duration at fixed laser intensity.

A comparison of K_{β}/K_{α} to LSP calculations gives $\eta_{L \to e} \approx 20\%$ consistent with the K_{α} -yield measurements*

Intense-Energy Coupling with Multikilojoule, 10-ps Pulses on OMEGA EP

Laser energy (J)/target volume (mm³)

Laser energy: 1 to 2100 J Laser pulse: 1 to 10 ps

P. M. Nilson Fusion Science Center For Extreme States of Matter and Laboratory for Laser Energetics University of Rochester

FSC

Omega Laser Facility Users' Group Workshop Rochester, NY 28–30 April 2010

Intense-Energy Coupling with Multikilojoule, 10-ps Pulses on OMEGA EP

Laser energy (J)/target volume (mm³)

Laser energy: 1 to 2100 J Laser pulse: 1 to 10 ps

P. M. Nilson Fusion Science Center For Extreme States of Matter and Laboratory for Laser Energetics University of Rochester

FSC

Omega Laser Facility Users' Group Workshop Rochester, NY 28–30 April 2010

- Fast-electron sources
- Characterizing $\eta_{L \to e}$: the refluxing technique
- OMEGA EP target-charging experiments
 - ultrafast proton radiography
- Intense energy-coupling to electrons
 - MTW experiments: 1- to 10- J, 1- to 10-ps pulses
 - OMEGA EP experiments: 40- J to 2100- J, 10-ps pulse
- $\eta_{L \to e}$ scaling

- Fast-electron sources
- Characterizing $\eta_{L \to e}$: the refluxing technique
- OMEGA EP target-charging experiments
 - ultrafast proton radiography
- Intense energy-coupling to electrons
 - MTW experiments: 1- to 10- J, 1- to 10-ps pulses
 - OMEGA EP experiments: 40- J to 2100- J, 10-ps pulse
- $\eta_{L \to e}$ scaling

Motivation

FSC

The scaling of $\eta_{L \to e}$ with laser energy and laser-pulse duration is unclear

Motivation

FSC

The scaling of $\eta_{L \rightarrow e}$ with laser energy and laser-pulse duration is unclear

Solid-target interactions

M. H. Key et al., Phys. Plasmas <u>5</u>, 1966 (1998). W Theobald et al. Phys. Plasmas <u>13</u> 043102 (200

W. Theobald *et al.*, Phys. Plasmas <u>13</u>, 043102 (2006). J. Davies *et al.*, PPCF <u>51</u>, 014006 (2009).

UR

- Fast-electron sources
- Characterizing $\eta_{L \to e}$: the refluxing technique
- OMEGA EP target-charging experiments
 - ultrafast proton radiography
- Intense energy-coupling to electrons
 - MTW experiments: 1- to 10- J, 1- to 10-ps pulses
 - OMEGA EP experiments: 40- J to 2100- J, 10-ps pulse
- $\eta_{L \to e}$ scaling

Previous heating experiments show significant scatter making theoretical comparisons challenging FSC

- ¹W. Theobald et al., Phys. Plasmas <u>13</u>, 043102 (2006).
- ²G. Gregori et al., Contrib. Plasma Phys. <u>45</u>, 284 (2005).

LLE

- ³S. N. Chen et al., Phys. Plasmas <u>14</u>, 102701 (2001).
- ⁴D. Baton et al., High Energy Density Phys. 3, 358 (2007).

- Fast-electron sources
- Characterizing $\eta_{L \rightarrow e}$: the refluxing technique
- OMEGA EP target-charging experiments
 - ultrafast proton radiography
- Intense-energy-coupling to electrons
 - MTW experiments: 1 to 10 J, 1 to 10 ps pulses
 - OMEGA EP experiments: 40 J to 2100 J, 10 ps pulse
- $\eta_{L \to e}$ scaling

A high-quality proton source is generated by target normal sheath acceleration (TNSA)

Source properties

- Ultralow emittance
- Short temporal burst: few ps
- High-energy: up to 60 MeV
- Low divergence: 20°
- High brightness
 - 10¹¹ to 10¹³ protons
 > 3 MeV per shot

Thin-foil sheath expansion

- T. E. Cowan et al., Phys. Rev. Lett. <u>92</u>, 204801 (2004).
- L. Romagnani et al., Phys. Rev. Lett. 95, 195001 (2005).

S. C. Wilks et al., Phys. Plasmas <u>8</u>, 542 (2001).

M. Borghesi et al., Phys. Rev. Lett. <u>92</u>, 055003 (2004).

Time-of-flight dispersion and a filtered stack detector produces a multiframe imaging capability FSC

M. Borghesi et al., Phys. Plasmas 9, 2214 (2002).

LLE

The virtual proton source is much smaller than the laser spot

M. Borghesi *et al.*, Phys. Rev. Lett. <u>92</u>, 055003 (2004). T. E. Cowan *et al.*, Phys. Rev. Lett. <u>92</u>, 204801 (2004).

LLE

FSC

- Fast-electron sources
- Characterizing $\eta_{L \to e}$: the refluxing technique
- OMEGA EP target-charging experiments
 - ultrafast proton radiography
- Intense energy-coupling to electrons
 - MTW experiments: 1- to 10- J, 1- to 10-ps pulses
 - OMEGA EP experiments: 40- J to 2100- J, 10-ps pulse
- $\eta_{L \to e}$ scaling

Prepulse-driven plasma expansion preconditions a solid target prior to intense laser irradiation FSC

- Foil targets without CH tampers show the same energy coupling to electrons
- On-shot fast-diode and scope measurement*
- Up to ≈ 0.5 ns before the pulse
- 80-dB range

The pedestal contains around 10^{-4} of the main pulse energy (50 to 150 mJ).

^{*}C. Dorrer *et al.*, OMEGA Lasers Users Group Workshop, Rochester, NY (28–30 April 2010).

Multiterawatt (MTW) experiments were performed with up to 10-J, 10-ps laser pulses FSC

- Laser intensities $I < 2 \times 10^{19} \text{ W/cm}^2$
- Copper targets
- Target volumes $V > 20 \times 20 \times 2 \ \mu m^3$

The normalized K_{α} yield $(Y_{K_{\alpha}}/E_{L})$ is independent of laser-pulse duration at constant intensity **FSE**

Target volume: $500 \times 500 \times 20$ - μ m³ Cu Intensity: $\sim 5 \times 10^{18}$ W/cm²

LLE

The effect of bulk target heating on the K-shell-emission spectrum is observed on the MTW UR 🔌 FSC

LLE

Measured K_{α} spectra are fit with PrismSPECT* assuming a linear heating gradient FSE

A single, time-independent thermal-electron temperature is unable to reproduce the high T_e data.

- Fast-electron sources
- Characterizing $\eta_{L \to e}$: the refluxing technique
- OMEGA EP target-charging experiments
 - ultrafast proton radiography
- Intense energy-coupling to electrons
 - MTW experiments: 1- to 10- J, 1- to 10-ps pulses
 - OMEGA EP experiments: 40- J to 2100- J, 10-ps pulse
- $\eta_{L \to e}$ scaling

Intense-energy coupling to electrons is inferred using a K_{α} production model

- K-photon generation calculated as in an infinite medium
- Relativistic K-shell ionization cross sections² included
- Classical slowing down approximation (CSDA)¹
- Negligible target heating

The calculated $\eta_{L \rightarrow e}$ parameter represents a minimum value.

UR

¹ H. O. Wyckoff, *ICRU Report* <u>37</u>, Intern. Comm. on Radiation Units and Measurements, Inc., Bethesda, MD (1984).

² H. Kolbenstvedt, J. Appl. Phys. <u>38</u>, 4785 (1967).

3-D LSP simulations include spatial and temporal variations in heating when calculating K_{β}/K_{α}

- Fast-electron source is prescribed
- The same target volumes and interaction time scales are modeled
- Assumes a Thomas–Fermi model
- Calculates EM fields self-consistently
- Emission probability calculated using the local temperature at the time of emission

Target interactions with 1-ps and 10-ps pulses are successfully modeled.

J. Myatt et al., Plasmas <u>14</u>, 056301 (2007).