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OMEGA direct-drive implosions

« The amount of Ar has to be very small:
— Not to change the hydrodynamics Ti layer
— To keep the optical depth of the Hep3 and Ly 20 atm. D2

.- [ Ar,
(n=3-1 transitions) small 0.072atm

CH

e Laser:

— 60 beams, several pulse shapes I
— Smoothing: 2D-SSD/DPP-SG4/DPR e~ TIMS <

 Three identical DDMMI instruments:

_ DDMMI = Direct-Drive Multi-Monochromatic TIMS__~
x-ray Imager

— Fielded along 3 quasi-orthogonal lines of sight
(TIM3/TIM4/TIMS)

— Record a collection of, gated, spectrally-
resolved x-ray images of the implosion core




Spectrally-resolved core imaging with DDMMI

DDMMI = Direct-Drive Multi-Monochromatic x-ray Imager

® A pinhole-array coupled to a multi-layer Bragg

mirror produces many guasi-monochromatic core
Images, each one characteristic of a slightly

different photon energy range'?

Pinhole is snout-mounted and placed
as close as possible to target to
maximize signal and spatial resolution,
for a given pinhole aperture.

*pinhole array-target distance = 31.5mm
target-mirror distance = 188mm
*Pinhole diameter = 10um
detector = gated X-ray framing cameras
Target | 4 *images recorded with CCD or film,
 phoss s oo *Magnification, M = 8.5X.
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DDMMI data: spectrally resolved images

Collection of gated, spectrally- Lyf‘ H‘iﬁ L\iﬁ
resolved images

Time increases from F1 to F4

Photon energy axis increases from
left to right

Resolution:
— Spatial: Ax =10 um
— Spectral: E/AE =150

— Frame separation = 100 ps




DDMMI data: spectrally resolved images

Collection of gated, spectrally- Lyf‘ H‘iﬁ L\iﬁ
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Data processing. space-resolved spectrum (SRS)

What if we pick up the contributions only from a selected region of the core image?

Mask of selected region

Partial Space—integrated Spectrum
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Data processing. space-resolved spectrum (SRS)

What if we pick up the contributions only from a selected region of the core image?
The result is a space-resolved spectrum integrated along a chord in the core

Fartial Space—integqrated Spectrum

Mask of selected region

Limitations:
* Signal-to-noise ratio
* Spatial resolution




Interpretation of SRS Lyp
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Interpretation of SRS »
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Interpretation of SRS Lyp
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* Each space-resolved spectrum has temperature and
density information integrated along chord parallel
to LOS and perpendicular to the image plane
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Interpretation of SRS Lyp
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* Each space-resolved spectrum has temperature and
density information integrated along chord parallel
to LOS and perpendicular to the image plane

* Each spatial region is located at the intersection of
three chords

* Spatial regions are constrained by their contributions

to spatially-resolved spectra recorded along three LOS




3 LOS, but multiple A Ly»
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* Each space-resolved spectrum has temperature and
density information integrated along chord parallel
to LOS and perpendicular to the image plane
ey ¢ R * Each spatial region is located at the intersection of
' three chords
* Spatial regions are constrained by their contributions
to spatially-resolved spectra recorded along three LOS




Modeling
* Physics model: T, and N, = SRS

1. Detailed collisional-radiative atomic kinetics model
2. Numerical integration of the radiation transport equation

 Search and reconstruction + model: SRS = T, and N,

1. Pareto genetic algorithm (PGA)
»  Fast and robust search algorithm
« Initialized by random number generator - unbiased

2. Fine-tuning step
»  Least-squares minimization method
*  Refine the PGA results to the very best

* R. Florido et al, Phys. Rev. E 80, 056402 (2009);
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Results: OMEGA shot 49956 frame 3

* A total of 141 SRS were used to extract T, and N, spatial structure
* Te tends to be larger in central region Ne in the periphery
* 3D asymmetries in the spatial structures are observed
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Results: OMEGA shot 49956 frame 3

* A total of 141 SRS were used to extract T, and N, spatial structure
* Te tends to be larger in central region Ne in the periphery
* 3D asymmetries in the spatial structures are observed
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Results: OMEGA shot 49956 frame 4

* A total of 85 SRS were used to extract T, and N, spatial structure

* Frame 4 is close to stagnation and the volume is smaller
* Ne has increased while Te has decreased

Z (rvorevy)

X=-21pum Xx=0pum

6.0e10” B
5.5x107
50x10° ¥
s 80107 §
= 4.0mx10"
& 3.5x10”
- 3.0x10"
25107 §
20xt07"
150107 ¥ ¥
1. 0x10’ 1.0c10”
5 0x 1080 5 0x 1080
-4

5 0x 1080




Results: OMEGA shot 49956 (Pe evolution)

* Pressure distribution is computed based on the Te and Ne distributions

* Frame 3 shows larger gradient in the pressure distribution than Frame 4
* As imploded, the core becomes more isobaric
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Conclusions

T, and N, spatial distributions have been extracted from the analysis
of space-resolved spectra (SRS) obtained from spectrally-resolved
Images recorded with three-identical DDMMI instruments fielded
along quasi-orthogonal directions

Analysis method:
— Two step search and reconstruction: PGA followed up by fine-tuning
— Method was tested with the synthetic test case

— This method can be interpreted as polychromatic tomography; number
of LOS is limited but there are multiple wavelengths associated with
each LOS

Work In progress:
Extract mixing distribution
Error estimation
Further synthetic data test cases
Comparison with 2D/3D hydrodynamics simulation
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