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• The amount of Ar has to be very small:

– Not to change the hydrodynamics

– To keep the optical depth of the Heb and Lyb

(n=3-1 transitions) small 

• Laser:

– 60 beams, several pulse shapes

– Smoothing: 2D-SSD/DPP-SG4/DPR

• Three identical DDMMI instruments:

– DDMMI ≡ Direct-Drive Multi-Monochromatic 

x-ray Imager

– Fielded along 3 quasi-orthogonal lines of sight

(TIM3/TIM4/TIM5)

– Record a collection of, gated, spectrally-

resolved x-ray images of the implosion core
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DDMMI ≡ Direct-Drive Multi-Monochromatic x-ray Imager

Spectrally-resolved core imaging with DDMMI

• A pinhole-array coupled to a multi-layer Bragg 

mirror produces many quasi-monochromatic core   

images, each one characteristic of a slightly 

different photon energy range1,2
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DDMMI data: spectrally resolved images
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• Collection of gated, spectrally-

resolved images

• Time increases from F1 to F4

• Photon energy axis increases from 

left to right

• Resolution:

– Spatial: ∆x = 10 mm

– Spectral: E/∆E  = 150 

– Frame separation = 100 ps
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Data processing: space-resolved spectrum (SRS)

• What if we pick up the contributions only from a selected region of the core image?

Mask of selected region



Data processing: space-resolved spectrum (SRS)

• What if we pick up the contributions only from a selected region of the core image?

• The result is a space-resolved spectrum integrated along a chord in the core

Mask of selected region

Limitations:
• Signal-to-noise ratio
• Spatial resolution
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• Each space-resolved spectrum has temperature and   
density information integrated along chord parallel 
to LOS and perpendicular to the image plane
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• Each space-resolved spectrum has temperature and   
density information integrated along chord parallel 
to LOS and perpendicular to the image plane

• Each spatial region is located at the intersection of
three chords
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* R. Florido et al, Phys. Rev. E 80, 056402 (2009);

• Physics model: Te and Ne SRS

1. Detailed collisional-radiative atomic kinetics model

2. Numerical integration of the radiation transport equation

• Search and reconstruction + model: SRS Te and Ne

1. Pareto genetic algorithm (PGA)

• Fast and robust search algorithm

• Initialized by random number generator  unbiased

2. Fine-tuning step

• Least-squares minimization method

• Refine the PGA results to the very best

Modeling
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Results: OMEGA shot 49956 frame 3
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• A total of 141 SRS were used to extract Te and Ne spatial structure
• Te tends to be larger in central region Ne in the periphery 
• 3D asymmetries in  the spatial structures are observed
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Results: OMEGA shot 49956 frame 4
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• A total of 85 SRS were used to extract Te and Ne spatial structure
• Frame 4 is close to stagnation and the volume is smaller
• Ne has increased while Te has decreased



Results: OMEGA shot 49956 (Pe evolution)
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• Pressure distribution is computed based on the Te and Ne distributions
• Frame 3 shows larger gradient in the pressure distribution than Frame 4
• As imploded, the core becomes more isobaric 



Conclusions

• Te and Ne spatial distributions have been extracted from the analysis 
of space-resolved spectra (SRS) obtained from spectrally-resolved 
images recorded with three-identical DDMMI instruments fielded 
along quasi-orthogonal directions

• Analysis method: 
– Two step search and reconstruction: PGA followed up by fine-tuning

– Method was tested with the synthetic test case

– This method can be interpreted as polychromatic tomography; number 
of LOS is limited but there are multiple wavelengths associated with 
each LOS

• Work in progress:
– Extract mixing distribution

– Error estimation

– Further synthetic data test cases

– Comparison with 2D/3D hydrodynamics simulation
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