Fast Electron Conversion Efficiency Scaling with Prepulse for Cone-Guided Fast Ignition

T. Ma^{1, 2}, P. K. Patel¹, A. G. MacPhee¹, C. D. Chen¹, L. Divol¹, D. Hey¹, A. J. Kemp¹, M. H. Key¹, D. J. Larson¹, S. Le Pape¹, H. S. McLean¹, Y. Ping¹, S. C. Wilks¹, D. Higginson², C. Murphy², H. Sawada², B. Westover², T. Yabuuchi², K. U. Akli³, R. B. Stephens³, R. R. Freeman⁴, G. E. Kemp⁴, A. G. Krygier⁴, L. D. Van Woerkom⁴, R. Fedosejevs⁵, H. Friesen⁵, Y. Y. Tsui⁵, S. D. Baton⁶, M. Koenig⁶, F. Perez⁶, D. Turnbull⁷, and F. N. Beg²

¹Lawrence Livermore National Laboratory, ²University of California, San Diego, ³General Atomics, ⁴The Ohio State University, ⁵University of Alberta, ⁶Laboratoire pour l'Utilisation des Lasers Intenses, ⁷Princeton University

Omega Laser Facility Users Group Meeting Rochester, New York April 28-30, 2010

University of California, San Diego Department of Mechanical and Aerospace Engineering 9500 Gilman Ave., La Jolla, 92037 L-399, Lawrence Livermore National Laboratory, Livermore, CA 94551

Two of the key issues for electron cone-guided fast ignition are conversion efficiency and e- transport

UCSD

The effect of prepulse on coupling efficiency was studied with cone and cone-wire targets on Titan

- Cones could provide direct access to dense core, but questions of preplasma confinement, electron origination, electron directionality
- Target materials carefully selected to allow preferential parts to fluoresce
- Cu cone allows imaging of interaction in cone, Cu wire allows imaging of coupling to tip and beyond

Why is prepulse an issue?

- Even in a laser system with good intensity contrast (10⁵-10⁷), the pedestal can be sufficient to create a significant preplasma
- The preplasma can severely affect the absorption of the laser

A prepulse measurement taken on the Titan laser

- Baton et al. (2009) showed that coupling beyond a cone target was decreased vs. no cone case -> hypothesized that preformed plasma in the cone was inhibiting transport beyond the cone
- Necessary to know the tolerable level of prepulse for fast ignition (full scale FI laser systems of 100 kJ are expected to have prepulses of 100 mJ – 1 J)

S. D. Baton et al., Phys. Plasmas 15, 042706 (2008)

Hydra was used to model the plasma conditions inside the Au cone due to irradiation by the laser prepulse

- Hydra is a 3-D rad-hydro code (simulations done in 2-D cylindrical geometry)
- From modeling, can predict the location of the critical surface relative to the cone tip and the extent of the underdense inside the cone

Profiles taken along the cone axis show critical density occurs farther from cone tip with increasing pp

profiles
 represent the
 density contour
 before the onset
 of the main
 pulse

n_{crit} (location of hot e- creation) occurs ~200 μm farther from cone tip with 1 J prepulse compared to 8 mJ

The capability to inject artificial prepulses on the Titan laser allowed for a study of the effects of pp on coupling

Cone-wire targets provided a quantitative scaling of coupling beyond the cone with varying levels of pp

Zuma is a 3D hybrid simulation code for relativistic electron transport in dense plasmas

• Based on Davies / Honrubia hybrid models (includes field generation) [1,2]:

$$\vec{E} = -\eta \vec{J}_{hot \ electron} + \frac{\eta}{\mu} \nabla \times \vec{B} \qquad \frac{\partial B}{\partial t} = -\nabla \times \vec{E}$$

- Background high density plasma is a resistive fluid while the fast electrons are treated kinetically
- Assumptions are appropriate for high density, relatively cool (T< ~1 keV) quasi-neutral plasmas where kinetic effects are strongly damped by the plasma collisionality [1,3]
- Kinetic fast electrons are slowed by interaction w/ the background electrons and scatter off both the background ions and electrons. This process is modeled via the drag and scattering formulas reported by Atzeni, Schiavi and Davies [4]

Electron density iso-surface

Simulations in Zuma can help us infer the energy deposition by generating K $\!\alpha$ profiles along the wire

Initial assumptions used for Zuma modeling

- Modeled as a 40 μm-diameter wire, 1 mm long
- Material = Copper
- Fully reflecting boundaries (wire edges, front, back)
- 2 μm resolution in each dimension
- Initial temperature = 0.1 eV
- Titan pulse (0.7 ps, gaussian in time, spatially uniform over area of wire)
- Electrons are injected at z = 0 (wire front face)
- 0° initial divergence angle
- 3D relativistic Maxwellian distribution w/ varying T_{hot}
- Injected electron energy varied from 0.15 J 30 J
- Time to run: ~3 hours, 8 cpus

A large parameter scan of varying T_{hot} and total injected electron energies was completed using Zuma

 Injecting a 500 keV T_{hot} e- beam at three different energies shows how the Kα profiles scale

 The same profiles, normalized, show regime where resistive effects become important

For each experimental profile, the best fit predicted K $\!\alpha$ profile from Zuma will be found

- Must match:
 - \circ Peak K α
 - Slope of fall-off
 - Total integrated
 Kα in first 500
 μm
- Each experimental shot (Kα profile) will be fit with Zuma to infer T_{hot} and conv. efficiency

Coupling into forward-propagating electrons is clearly reduced with prepulse

- Coupling decreases by a factor of ~8 when prepulse increased from 8 mJ to 1 J
- Error bars
 represent shot-to
 shot variation
 and uncertainty
 in absolute
 calibration of Kα
 diagnostics

Hot electron temperatures vary little across large range of prepulse energies

- Unvarying T_{hot} with prepulse
 - → no evidence of ponderomotive steepening at low prepulses

500 keV etemperature (accelerated ponderomotively) would correspond to an $I\lambda^2$ of just 10^{18}

➔ representative of range of intensities in distribution?

We are also using Zuma to investigate the effect of reflecting boundaries, divergence angle, fields, etc.

- Current conv. eff. estimates are a lower limit due to total refluxing assumption
- Extreme case of isotropic beam (180° divergence) would have little effect on absolute conv, up to 20% increase in T_{hot}
- Allowing electrons to escape out the front boundary, could boost conversion by ~10%
- In all cases, energy lost to E fields < 5%

Increasing the prepulse level into the cone gives larger region of electron heating

- Total integrated K α yield is near-identical in both cases
- Low prepulse, higher K α peak, 50 μ m from tip.
- Larger prepulse gives larger, more diffuse heated region

PSC PIC modeling shows rapid filamentation of laser, transverse ejection of electrons w/ large pp

- Preplasma causes
 laser energy
 deposition earlier in
 cone and at wider
 angle
- At 7.5 mJ pp, one main filament bores a hole and reaches the tip
- At 100 mJ pp, multiple filaments are created and halt propagation of the beam, accelerating electrons transversely

MacPhee et al., Physical Review Letters, 104 055002 (2010).

How much could we improve coupling with no prepulse?

 Using LULI's 2ω, high-contrast (>10¹⁰ intensity) laser, identical cone-wire targets were irradiated

- Coupling is ~factor of 2 higher than highest coupling shot on Titan
- However, difficult to decouple low prepulse effects from 2ω physics

Summary & Future Work

Laser-to-electron coupling in cone-wire targets:

- Strong reduction in coupling into forward-going electrons as a function of prepulse
- Coupling efficiencies represent a minimum estimate b/c of total refluxing assumption
- With a 1-T fit, data is consistent with a **400-500 keV** temperature
- However, Kα profile shows evidence of a higher temperature component (bump at end of wire = confinement of very hot electrons by sheath?)
- Currently working on a comparison of Zuma vs. LSP to look at effects of vacuum boundaries, more complete physics model
- PIC-Hybrid simulations are in progress to model the full-scale laser interaction and transport in solid wire

Collaborators and Acknowledgements

F. N. Beg, T. Bartal, S. Chawla, D. P. Higginson, C. Murphy, H. Sawada, M. S. Wei, B. Westover, T. Yabuuchi *University of California, San Diego, La Jolla, CA*

A. G. MacPhee, C. D. Chen, L. Divol, S. P. Hatchett, D. Hey, A. J. Kemp, D. J. Larson, M. H. Key, S. Le Pape, A. J. Mackinnon, H. McLean, P. K. Patel, Y. Ping, S. C. Wilks Lawrence Livermore National Laboratory, CA

> R. B. Stephens, K. U. Akli General Atomics, San Diego, CA

L. D. Van Woerkom, R. R. Freeman, E. Kemp, A. G. Krygier The Ohio State University, Columbus, OH

> R. Fedosejevs, H. Friesen, Y. Y. Tsui University of Edmonton, Alberta, Canada

S. D. Baton, M. Koenig, F. Perez Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, France

Funding

- Office of Fusion Energy Science (OFES)
 - Advanced Concept Exploration Program

Fusion Science Center (FSC)

 U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

T. Ma is currently funded through the Lawrence Scholar Program Fellowship, and previously was funded under LLNL's Institute of Laser Science and Applications grant.

