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Two of the key issues for electron cone-guided fast 
ignition are conversion efficiency and e- transport 



3 

The effect of prepulse on coupling efficiency was 
studied with cone and cone-wire targets on Titan 

Cones 
Cu cone of 
25 µm wall 
thickness 

30º 

1 mm 

Cone tip 
diameter: 30 µm 

Cone tip 
thickness: 5 µm 

  Cones could provide 
direct access to dense 
core, but questions of 
preplasma confinement, 
electron origination, 
electron directionality 

  Target materials 
carefully selected to 
allow preferential parts 
to fluoresce 

  Cu cone allows imaging 
of interaction in cone, 
Cu wire allows imaging 
of coupling to tip and 
beyond 

Cone-Wires 

Wire geometry 
allows e- 
propagation to be 
sudied w/o 
complexities of 
diverging beam 
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Why is prepulse an issue? 

  Baton et al. (2009) showed that coupling beyond a cone target was 
decreased vs. no cone case -> hypothesized that preformed plasma 
in the cone was inhibiting transport beyond the cone 

  Necessary to know the tolerable level of prepulse for fast ignition 
(full scale FI laser systems of 100 kJ are expected to have prepulses 
of 100 mJ – 1 J) 

  Even in a laser system 
with good intensity 
contrast (105-107), the 
pedestal can be sufficient 
to create a significant 
preplasma 

  The preplasma can 
severely affect the 
absorption of the laser 

A prepulse 
measurement 
taken on the 
Titan laser 

S. D. Baton et al., Phys. Plasmas 15, 042706 (2008) 
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Hydra was used to model the plasma conditions inside the 
Au cone due to irradiation by the laser prepulse 

  Hydra is a 3-D rad-hydro code (simulations done in 2-D cylindrical geometry) 
  From modeling, can predict the location of the critical surface relative to the 

cone tip and the extent of the underdense inside the cone 

8 mJ prepulse 1 J prepulse 

ncrit 

1/100th ncrit ncrit 

1/100th ncrit 
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Profiles taken along the cone axis show critical density 
occurs farther from cone tip with increasing pp 

  profiles 
represent the 
density contour 
before the onset 
of the main 
pulse 

  ncrit (location of 
hot e- creation) 
occurs ~200 µm 
farther from 
cone tip with 1 J 
prepulse 
compared to 8 
mJ 
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The capability to inject artificial prepulses on the Titan 
laser allowed for a study of the effects of pp on coupling  

Laser 

Short-Pulse: 
Wavelength: 1054 nm 
Energy: 150 J 
Pulse Length: 0.7 ps 
Spot Size: 7 µm FWHM 
Intensity: 2x1020 W/cm2 

Intrinsic prepulse: 8 mJ 

Artificial Prepulse Laser: 
Location: coaxial to main 
beam 
Timing: 3 ns duration,       
-3 ns before main pulse (to 
overlap intrinsic) 
Energy: 0 – 1 J 
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Cone-wire targets provided a quantitative scaling of 
coupling beyond the cone with varying levels of pp 

  Kα originates from the 
electron source generated 
by the main short pulse, 
and which is injected via 
the tip of the cone into the 
wire 

17 mJ pp 
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Zuma is a 3D hybrid simulation code for relativistic 
electron transport in dense plasmas 

  Based on Davies / Honrubia hybrid models (includes field generation) [1,2]: 

  Background high density plasma is a resistive fluid while the fast electrons 
are treated kinetically 

  Assumptions are appropriate for high density, relatively cool (T< ~1 keV) 
quasi-neutral plasmas where kinetic effects are strongly damped by the 
plasma collisionality [1,3] 

  Kinetic fast electrons are slowed by interaction w/ the background 
electrons and scatter off both the background ions and electrons.This 
process is modeled via the drag and scattering formulas reported by 
Atzeni, Schiavi and Davies [4] 
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[1] J.R. Davies, Phys. Rev. E, 65, 026407 (2002) 

[2] Honrubia, et al., Laser and Particle Beams, 22, 129-135 (2004) 

[3] L. Gremillet, et al., Phys. Plasmas, Vol. 9, No. 3 (2002) 

[4] S. Atzeni, A. Schiavi, and J. R. Davies, Plasma Phys. Control. Fusion, 51, 015016 (2009) 
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Simulations in Zuma can help us infer the energy 
deposition by generating Kα profiles along the wire 

Thot? η? 

Inject an e- 
spectrum:  

At each axial point along the wire, transverse 
integration of Kα over all time gives profiles 
that can be matched to the experimental data 

Movie: Instantaneous 
Kα in wire over time  

Cu wire modeled at full scale:  
40 µm diameter, 1 mm long 
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Initial assumptions used for Zuma modeling 
  Modeled as a 40 µm-diameter wire, 1 mm long 
  Material = Copper 
  Fully reflecting boundaries (wire edges, front, back) 
  2 µm resolution in each dimension 
  Initial temperature = 0.1 eV 
  Titan pulse (0.7 ps, gaussian in time, spatially 

uniform over area of wire) 
  Electrons are injected at z = 0 (wire front face) 
  0° initial divergence angle 
  3D relativistic Maxwellian distribution w/ varying 

Thot 
  Injected electron energy varied from 0.15 J – 30 J 

  Time to run: ~3 hours, 8 cpus 

Ka energy slices 
for a 500 keV, 1.5 

J simulation 
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A large parameter scan of varying Thot and total injected 
electron energies was completed using Zuma 

  The same profiles, normalized, 
show regime where resistive 
effects become important 

  Injecting a 500 keV Thot e- beam 
at three different energies 
shows how the Kα profiles scale 
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For each experimental profile, the best fit predicted Kα 
profile from Zuma will be found 

  Must match:  
o  Peak Kα

o  Slope of fall-off 
o  Total integrated 

Kα in first 500 
µm 

  Each experimental 
shot (Kα profile) 
will be fit with Zuma 
to infer Thot and 
conv. efficiency 
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Coupling into forward-propagating electrons is 
clearly reduced with prepulse 

  Coupling 
decreases by a 
factor of ~8 when 
prepulse 
increased from 8 
mJ to 1 J 

  Error bars 
represent shot-to 
shot variation 
and uncertainty 
in absolute 
calibration of Kα 
diagnostics 
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Hot electron temperatures vary little across large range 
of prepulse energies 

  Unvarying Thot with 
prepulse  

" no evidence of 
ponderomotive 
steepening at low 
prepulses 

  500 keV e- 
temperature 
(accelerated 
ponderomotively) 
would correspond to 
an Iλ2 of just 1018 

" representative of 
range of intensities 
in distribution? 
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We are also using Zuma to investigate the effect of 
reflecting boundaries, divergence angle, fields, etc. 

  Current conv. eff. 
estimates are a lower 
limit due to total 
refluxing assumption 

  Extreme case of 
isotropic beam (180° 
divergence) would 
have little effect on 
absolute conv, up to 
20% increase in Thot 

  Allowing electrons to 
escape out the front 
boundary, could boost 
conversion by ~10% 

  In all cases, energy 
lost to E fields < 5% 
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Cu Kα Image 

174 J, 100 mJ PP 

Cu Kα Image 

166 J, 7.5 mJ PP 

Increasing the prepulse level into the cone gives 
larger region of electron heating 

  Total integrated Kα yield is near-identical in both cases 
  Low prepulse, higher Kα peak, 50 µm from tip.  
  Larger prepulse gives larger, more diffuse heated region 
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PSC PIC modeling shows rapid filamentation of laser, 
transverse ejection of electrons w/ large pp 

plots @ 3 ps 

  Preplasma causes 
laser energy 
deposition earlier in 
cone and at wider 
angle 

  At 7.5 mJ pp, one 
main filament bores 
a hole and reaches 
the tip 

  At 100 mJ pp, 
multiple filaments 
are created and 
halt propagation of 
the beam, 
accelerating 
electrons 
transversely 

MacPhee et al., Physical Review Letters, 104 055002 (2010). 
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How much could we improve coupling with no prepulse? 


  Using LULI’s 2ω, 
high-contrast (>1010 

intensity) laser, 
identical cone-wire 
targets were 
irradiated 

  Coupling is ~factor of 
2 higher than highest 
coupling shot on 
Titan  

  However, difficult to 
decouple low 
prepulse effects from 
2ω physics 
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Laser-to-electron coupling in cone-wire targets: 

  Strong reduction in coupling into forward-going electrons as a function of 
prepulse 

  Coupling efficiencies represent a minimum estimate b/c of total refluxing 
assumption 

  With a 1-T fit, data is consistent with a 400-500 keV temperature 

  However, Kα profile shows evidence of a higher temperature component 

(bump at end of wire = confinement of very hot electrons by sheath?) 

  Currently working on a comparison of Zuma vs. LSP to look at effects of 
vacuum boundaries, more complete physics model 

  PIC-Hybrid simulations are in progress to model the full-scale laser 
interaction and transport in solid wire 

Summary & Future Work 
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