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Summary

The first measurements of x-ray driven implosions with 
charged particles have resulted in unique and quantitative 
characterization of critical aspects of indirect-drive ICF 

• Observations of three types of spontaneous electric fields differing 
in strength by two orders of magnitude (~ 108 -1010 V m-1) the largest 
being nearly one-tenth of the Bohr field. 

• Observations of self-generated megaGauss magnetic fields

• Observations of plasma flows and supersonic jets (~ Mach 4) 

• Determinations of areal density (ρR) and implosion symmetry

• Demonstration of the absence of the stochastic filamentary pattern 
and striations that generally found in laser-driven implosions 
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Capsule diameter ~ 2 mm

Cryogenic Hohlraum
(length ~ 9 mm) 

Target chamber
Diameter ~ 10 m

Fusion ignition will be explored with indirect drive ICF 
approach at the National Ignition Facility



5 For long-pulse, low-intensity laser light, the dominant 
source for B-field generation is ∇ne×∇Te , and the 
dominant source for E fields is ∇Pe
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Simultaneous imaging with two or more discrete proton 
energies breaks any inherent degeneracy between E and B
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Spatial resolution:     ~ 40 μm (FWHM)
Energy resolution:     ~ 3%
Temporal resolution: ~ 80 ps

Source D + 3He → 4He + p (14.7 MeV)
D +  D  →    T   + p (3.0 MeV)
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(1)  Proton trajectory bending is due to the Lorentz force                                    

(2)  Proton deflection angle Ө is proportional to

(3) Proton deflection due to collisional scattering 
is also proportional to  

But this process always accompanies with
energy loss
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The Lorentz force is used to identify and measure E and B
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D3He p

DD p

The views of the spatial structure and temporal evolution 
of both the laser drive in a hohlraum and implosion 
properties provide essential insight into x-ray-driven ICF 
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A striking feature shown in both fluence and energy 
images is a five-pronged asterisk-like pattern 
surrounding the imploding capsule. 

C. K. Li et al., Science (2010)
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A common feature of the direct-drive implosions is the 
presence of striations around the imploded capsule

CR-39 
detector

20 beams drive 
the backlighter

Proton fluence
14 kJ laser drive

R. Rygg  et al., Science (2008)
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Proton fluence focusing and its reversal are caused by 
the direction change of a self-generated radial E field 
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C.K. Li et at, PRL (2008)
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Self-emission, spectrally resolved one-dimensional images 
and energy spectra reveal a strong, rapidly-changing, 
asymmetric field structure near the hohlraum axis

 Energy

0.E+00

8.E+06

8 12 16

Energy (MeV)

Space 

Yield   
(MeV -1) 

Compression

Shock flash

0.E+00

1.E+07

8 12 16

Energy (MeV)

Yield  
(MeV -1) 

Shock flash

Compression

laser-beams

E
t
B

×−∇=
∂
∂



13

0

50

100

150

200

250

0 90 180 270 360

Angle (degree)

Pi
xe

l V
al

ue

Vacuum

Gas-filled

The preliminary data from the first proton backlighting 
gas-filled hohlraum-driven implosions indicate that the 
gas inhibits plasma flow and jet formation 
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Summary

The first measurements of x-ray driven implosions with 
charged particles have resulted in unique and quantitative 
characterization of critical aspects of indirect-drive ICF 

• Observations of three types of spontaneous electric fields differing 
in strength by two orders of magnitude (~ 108 -1010 V m-1) the largest 
being nearly one-tenth of the Bohr field. 

• Observations of self-generated megaGauss magnetic fields

• Observations of plasma flows and supersonic jets (~ Mach 4) 

• Determinations of areal density (ρR) and implosion symmetry

• Demonstration of the absence of the stochastic filamentary pattern 
and striations that generally found in laser-driven implosions 


