Feasibility of proton radiography in high debris environments

<u>Nathalie Renard-Le Galloudec¹</u>, J. Cobble², A. Merwin¹, Y. Paudel¹, I. Shrestha³, G. C. Osborne³, K. M. Williamson³, V. L. Kantsyrev³

¹ Nevada Terawatt Facility, Physics Department, University of Nevada, Reno, Nevada 89557, USA

² Los Alamos National Laboratory, Los Alamos, NM 87545

³ Physics Department, University of Nevada, Reno, Nevada 89557, USA

Our laser functions in a high EMP and a high debris environment

"The xray energy deposited in my samples is approximately the same as what NIF is emitting, since the z-pinch is more efficient at making xrays and our samples are so close!" S. Nelson, LLNL

Planar wires arrays were used to asses debris/noise

CR39 is not useable if unprotected

3.0 cm -

Soft protective layer prevents cracks, breakage and is washable

We demonstrated the feasibility of clean, very high signal to noise ratio proton radiography for these extremely hostile environments

Glycerol captures the bullets, the vaporized material and attenuates the low energy protons

Can a thin layer enhance signal to noise ratio?

 C^{4+} ion track with energies approaching 15 MeV (TPIE) – LLE – courtesy of J. Cobble

It is believed that the uniform background comes from protons that do not go through the TPIE pinhole but scatter into the detector region through a bounce off of the top of the cart that holds the TPIE. The solid angle for this is a million times higher than the collection solid angle of the pinhole.