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Thomson scattering is a core diagnostic in MHD facilities and 
should be adopted in the laser plasma community

• Intro to Thomson scattering 

• Electron temperature 

measurements

• Electron Density

• Driven plasma waves

• Ion temperature measurements
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Thomson scattering 
“Elastic” scattering of electromagnetic-waves from free electrons (hν<<mec2)

Non-collective Thomson Scattering (λ < λD)
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Thomson scattering in laser produced plasmas is typically collective 
as a result of the relatively high densities (α~2-3)

Non-collective Regime (α < 1)

Collective Regime (α > 1)

Collective Regime (α2 > 1/(ZTe/3Ti - 1))
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At OMEGA, a 2ω or 4ω laser beam can be configured as the TS probe 
and scattered light is collected in TIM6

target 
chamberTop

Bottom

TIM6
TS Collection

TIM4
TS Alignment
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TIM 2

f/10 collection
lens

2ω/4ω
Beam

J. S. Ross et al. Rev. Sci. Instr., 77 10E520 (2006)
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LOCAL plasma parameters are measured with Thomson scattering

– Light is only scattered from the regions of the plasma that over lap the 
probe beam

– The slits on the diagnostics limit the region where light is collected

Projection of the 200µm spectrometer 
slit into the plasma plane

Projection of the 150µm streak 
camera slit into the plasma plane

Probe Laser



Section I
Electron Temperature Measurements

The separation between the ion-acoustic features in the scattering 
spectrum provides a direct measure of ZTe
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Typical Thomson scattering setups can measure the electron 
temperature to within 15%
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Aligning the spectral slit with the probe beam provides a scattering 
profile that can be used to measure temperature gradients

4ω Thomson Probe
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• We use an intensified CCD camera coupled to a spectrometer
• The slit of the spectrometer is aligned parallel to the probe beam
• Heating a hohlraum from one side provides a significant 

temperature profile that is used to test our nonlocal hydrodynamic 
simulations
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Last month S. Ross was able to measure the first high-frequency 
collective features from 4ω Thomson scattering

• 4ω scattering provide access to high 
densities

• The wavelength shift (EPW) is a measure 
of the density:

• The width (EPW) is a measure of the 
electron temperature

• The IAW provides a measure of Z:
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Section II
Local Electron Density Measurements using IAWs

 Few experiments have successfully measured the local electron density in 
a laser produced plasma

 A calibrated Thomson scattering system is challenging on single shot laser 
facilities and is unrealistic at large facilities like Omega, NIF, LILL

 Collective Thomson scattering from electron plasma waves has been 
demonstrated, but requires significant probe energy

 Multiple Thomson-scattering diagnostics can be used to expose the 
sensitivity of ion-acoustic waves to Debye shielding and provide an 
accurate measure of the density

Froula et al., Phys. Rev. Lett. 95, 195005 (2005)
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Ion-acoustic waves are dispersive; the sound speed is a function 
wavelength, density, and temperature

Assuming: ZTe >> Ti
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Using two TS diagnostics to probe significantly different k-vectors, we 
have a closed system for (Te, Ne)
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Thomson scattering measurements in half-hohlruams shot at 
OMEGA show a decrease in Te from 10.7 keV to 2.6 keV over 600ps.
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• 2ω and 4ω configurations are used 
to probe significantly different IAW 
vectors

• The uncertainty in Te is better than 
10%

• The uncertainty in ne is better than 
20%



Section III
Measuring the Amplitude Plasma Waves

 The scattered power is a function of the Landau damping

 The Landau damping is a function of the ZTe/Ti through the 
slope and number of particles in the distribution function
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Section III
Measuring the Amplitude Plasma Waves

 The scattered power is a function of the Landau damping

 The Landau damping is a function of the ZTe/Ti through the 
slope and number of particles in the distribution function
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Ion vanadium, the electron and ion Landau damping have 
similar contributions to the total ion-wave damping

Wavelength Shift 
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The asymmetry changes directions mid-way 
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are on throughout the probe beam
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Introducing a drift between the 
electrons and ions (via return current) 

changes the LD
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The electron Landau damping is 
reduced/increase leading to an asymmetric 

scattering spectrum
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Introducing a drift between the 
electrons and ions (via return current) 

changes the LD
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The electron Landau damping is 
reduced/increase leading to an asymmetric 

scattering spectrum
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Increasing the charge state (Z) eliminates the ion Landau 
damping and the ion wave becomes unstable

In Au, there are no ions at the phase 
velocity; the ion-damping is zero
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directions, the ion-acoustic wave 

becomes unstable

When the drift velocity exceeds the ion-acoustic phase velocity, the mode becomes 
unstable
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Increasing the charge state (Z) eliminates the ion Landau 
damping and the ion wave becomes unstable

In Au, there are no ions at the phase 
velocity; the ion-damping is zero
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Section VI
Ion Temperature Measurements

 Theoretically the ion temperature can be determined from the width 
of the ion-acoustic features
— due to gradients within the TS volume make this measurement 

uncertain and therefore, unreliable in laser produced plasmas

 Multi-ion species plasmas allow the accurate measurement of ion 
temperature from the relative amplitude of the ion-acoustic modes
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Multi-ion CH plasmas allow an accurate measure of both the 
electron and ion temperature
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These results were used to validate hydrodynamic simulations which 
provides a foundation for our Laser-plasma interaction studies 

Varying the energy in the 33 Heater beams 
scales the temperature in the gas fill

D. H. Froula et al. Phys. Plasmas, 13 052704 (2006)

A peak temperature of 3.5 keV is 
measured for a ne/ncr=6%

HYDRA
(f=0.05)

HYDRA
(nonlocal)

TS Data

Along the axis of the hohlraum a uniform hot 
plasma is produced

33 frequency tripled (355nm) laser beams 
are used to heat the target
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Conclusions

• Thomson scattering is a proven diagnostic to measure local plasma 
parameters in laser produced plasma experiments

• We have shown a new technique for measuring the LOCAL electron density 
using the ion-acoustic features

• Currently we are investigating the effects of heat flow in high-Z plasmas 
where we have recently observed a large asymmetry (100:1) in the ion-
acoustic spectrum
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•We have been successful in measuring TS spectra using 
laser energies between 0.5J and 200J.

–Energy requirement is determined by background generated by 
heater beams:

•Small single beam facilities require ~1J
•Large multi-beam facilities (>10 beams) require 10-100J
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Thomson scattering in laser produced plasmas is typically collective 
as a result of the relatively high densities (α~2-3)

Collective Thomson Scattering 
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