Thomson-Scattering Techniques at the OMEGA Laser Facility OMEGA Workshop 2010

D. H. Froula Lawrence Livermore National Laboratory

April 2010

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

D. H. Froula, Thomson-Scattering on OMEGA

Thomson scattering is a core diagnostic in MHD facilities and should be adopted in the laser plasma community

Complete Thermal Scattering Spectrum

Thomson scattering

"Elastic" scattering of electromagnetic-waves from free electrons ($hv << m_e c^2$)

D. H. Froula, Thomson-Scattering on OMEGA

Thomson scattering in laser produced plasmas is typically collective as a result of the relatively high densities (α ~2-3)

At OMEGA, a 2ω or 4ω laser beam can be configured as the TS probe and scattered light is collected in TIM6

D. H. Froula, Thomson-Scattering on OMEGA

LOCAL plasma parameters are measured with Thomson scattering

- Light is only scattered from the regions of the plasma that over lap the probe beam
- The slits on the diagnostics limit the region where light is collected

Section I Electron Temperature Measurements

The separation between the ion-acoustic features in the scattering spectrum provides a direct measure of ZT_e

$$\Delta \lambda \cong 4\lambda_{\text{probe}} \sin(\theta/2) \sqrt{\frac{ZT_{\text{e}}}{M}}$$

Assuming $ZT_e >> 3T_i$

Typical Thomson scattering setups can measure the electron temperature to within 15%

D. H. Froula, Thomson-Scattering on OMEGA

Aligning the spectral slit with the probe beam provides a scattering profile that can be used to measure temperature gradients

- We use an intensified CCD camera coupled to a spectrometer
- The slit of the spectrometer is aligned parallel to the probe beam
- Heating a hohlraum from one side provides a significant temperature profile that is used to test our nonlocal hydrodynamic simulations

Last month S. Ross was able to measure the first high-frequency collective features from 4ω Thomson scattering

- 4

 scattering provide access to high densities
- The wavelength shift (EPW) is a measure of the density:

$$\Delta \lambda_{EPW} \approx 2\lambda_{\text{probe}} \left[\frac{n}{n_{cr}} + 3\frac{v_{th}^2}{c^2}\right]^{1/2}$$

- The width (EPW) is a measure of the electron temperature
- The IAW provides a measure of Z:

$$\Delta \lambda_{IAW} \cong 4 \lambda_{\text{probe}} \sin(\theta/2) \sqrt{\frac{ZT_e}{M}}$$

Scattering from the EPW is weak; high phase velocities \rightarrow low number of particles

Section II Local Electron Density Measurements using IAWs

- Few experiments have successfully measured the local electron density in a laser produced plasma
- A calibrated Thomson scattering system is challenging on single shot laser facilities and is unrealistic at large facilities like Omega, NIF, LILL
- Collective Thomson scattering from electron plasma waves has been demonstrated, but requires significant probe energy
- Multiple Thomson-scattering diagnostics can be used to expose the sensitivity of ion-acoustic waves to Debye shielding and provide an accurate measure of the density

Froula et al., Phys. Rev. Lett. 95, 195005 (2005)

Using two TS diagnostics to probe significantly different k-vectors, we have a closed system for (Te, Ne)

- One diagnostic is chosen to be insensitive to N_e, therefore measures T_e
- Second diagnostic is chosen to be sensitive to N_e
- The combination is a closed system for (T_e, N_e)

Froula et al., Phys. Rev. Lett., 95, 195005 (2005)

D. H. Froula, Thomson-Scattering on OMEGA

Thomson scattering measurements in half-hohlruams shot at OMEGA show a decrease in T_e from 10.7 keV to 2.6 keV over 600ps.

- The uncertainty in T_e is better than 10%
- The uncertainty in n_e is better than 20%

Section III Measuring the Amplitude Plasma Waves

- The scattered power is a function of the Landau damping
- The Landau damping is a function of the ZTe/Ti through the slope and number of particles in the distribution function

Section III Measuring the Amplitude Plasma Waves

- The scattered power is a function of the Landau damping
- The Landau damping is a function of the ZTe/Ti through the slope and number of particles in the distribution function

Ion vanadium, the electron and ion Landau damping have similar contributions to the total ion-wave damping

Ion vanadium, the electron and ion Landau damping have similar contributions to the total ion-wave damping

Ion vanadium, the electron and ion Landau damping have similar contributions to the total ion-wave damping

Increasing the charge state (Z) eliminates the ion Landau damping and the ion wave becomes unstable

Increasing the charge state (Z) eliminates the ion Landau damping and the ion wave becomes unstable

Section VI Ion Temperature Measurements

- Theoretically the ion temperature can be determined from the width of the ion-acoustic features
 - due to gradients within the TS volume make this measurement uncertain and therefore, unreliable in laser produced plasmas
- Multi-ion species plasmas allow the accurate measurement of ion temperature from the relative amplitude of the ion-acoustic modes

Multi-ion CH plasmas allow an accurate measure of both the electron and ion temperature

These results were used to validate hydrodynamic simulations which provides a foundation for our Laser-plasma interaction studies

D. H. Froula et al. Phys. Plasmas, 13 052704 (2006)

- Thomson scattering is a proven diagnostic to measure local plasma parameters in laser produced plasma experiments
- We have shown a new technique for measuring the LOCAL electron density using the ion-acoustic features
- Currently we are investigating the effects of heat flow in high-Z plasmas where we have recently observed a large asymmetry (100:1) in the ionacoustic spectrum

•We have been successful in measuring TS spectra using laser energies between 0.5J and 200J.

-Energy requirement is determined by background generated by heater beams:

•Small single beam facilities require ~1J

•Large multi-beam facilities (>10 beams) require 10-100J

Thomson scattering in laser produced plasmas is typically collective as a result of the relatively high densities (α ~2-3)

D. H. Froula, Thomson-Scattering on OMEGA