Neutron spectrometry on OMEGA and the NIF using the Magnetic Recoil Spectrometer (MRS)

14

T Lewis, M Romanofsky, C Abbott, J Szczepanski

Chad Abbott, Tom Lewis, Fred Rister

Chad Abbott

Tim Clark

Milt Shoup, David Meyerhofer

C Abbott, J Magoon, M Romanofsky

Mark Romanofsky, Ron Callari

by eugene kowaluk, 16 February 2010 2 Johan Frenje, MIT 3 Jason Magoon 6 Oscar Lopez-Raffo 8 Mark Romanofsky

1 Milt Shoup

4 Tom Lewis 5 Chad Abbott

7 Robert Till

9 Brian Rice

10 Tim Clark 11 Michelle Burke

14 Nick Fillion

Johan Frenje, OMEGA Laser User's Group 2nd Workshop, Rochester, NY, Apr 28 - 30, 2010

John Szczepanski, Chad Abbott

Collaborators

MIT	LLNL	LLE	GA	SNL
D. Casey	R. Ashabranner	C. Abbott	J. Kilkenny	R. Leeper
R. Frankel	R. Bionta	R. Betti	J. Hund	
J. Frenje	A. Carpenter	M. Burke		
C. Li	C. Cerjan	T. Clark		
M. Manuel	M. Eckart	N. Fillion	Geneseo	ΙΑΝΙ
H. Rinderknecht	J. Edwards	V. Glebov	Concoco	
M. Rosenberg	B. Felker	T. Lewis	K Eletcher	D. Wilson
J. Schaeffer	S. Friedrich	O. Lopez-Raffo		G Hale
F. Séguin	S. Hatchett	J. Magoon		C. Halo
N. Sinenian	R. Hollaway	P. McKenty		
A. Zylstra	D. Koen	D. Meyerhofer		
R. Petrasso	O. Landen	B. Rice		
	D. Larson	P. Radha		
	M. Mckernan	M. Romanovsky		
	D. McNabb	T. Sangster		
	A. Mackinnon	J. Szcepanski		
	M. Moran	M. Shoup		
	R. Prasad	R. Till		
	R. Rygg	and many more		
	R. Zacharias	-		
	M. Yeoman			
	and many more…			

Summary

- An MRS has been successfully implemented and successfully used on OMEGA for diagnosing high-ρR cryogenic DT implosions.
- OMEGA-MRS data and simulations indicate that the NIF MRS will accurately diagnose THD / DT implosions.
- Basic science experiments relevant to stellar nucleosynthesis and ICF are being conducted and planned at OMEGA and NIF, respectively.

Outline

- Motivation for the MRS
- The MRS principle
- The OMEGA MRS
 - Systematic uncertainties
 - Experimental results
 - The NIF MRS
 - Ab initio characterization of the MRS
 - Statistical uncertainties
 - Systematic uncertainties
 - Basic-science experiments relevant to stellar nucleosynthesis and ICF

To provide information about several implosion parameters that will be integral for assessing failure modes

**J. Källne et al., Phys. Rev. Letters 85, 1246 (2000).

The neutron spectrum is measured by the MRS

J.A. Frenje et al., Rev. Sci. Instrum. 72, 854 (2001).

CR-39 detectors are used in the MRS for detection of forward scattered recoil particles (protons or deuterons)

- CR-39 detects the charged recoil particles with a 100% efficiency.
- CR-39 detects DT neutrons with an efficiency of 5_10⁻⁵.**

^{**} J.A. Frenje et al., Rev. Sci. Instrum. 73, 2596 (2002).

The Coincidence Counting Technique (CCT) is applied to the MRS data for low-yield applications**

S/B is enhanced orders of magnitude when using the CCT

^{**} Daniel Casey will talk about this in much more detail in the next presentation.

Detection efficiency – $\varepsilon_{MRS}(E_n)$

• Detection efficiency $[\varepsilon_{MRS}(E_n)]$ can be expressed as

An absolute neutron spectrum is measured with high accuracy because Ω_n , n_i , t_f , $d\sigma/d\Omega_{lab}$ and Ω_r are well known

Energy resolution – $\Delta E_{MRS}(E_n)$

• Energy resolution $[\Delta E_{MRS}(E_n)]$ can be expressed as

$$\Delta \boldsymbol{E}_{MRS}(\boldsymbol{E}_n) \approx \sqrt{\Delta \boldsymbol{E}_f(\boldsymbol{E}_n)^2 + \Delta \boldsymbol{E}_k(\boldsymbol{E}_n)^2 + \Delta \boldsymbol{E}_m(\boldsymbol{E}_n)^2}$$

 $\Delta E_f(E_n)$ = Energy broadening in foil \propto foil thickness (t_f)

 $\Delta E_k(E_n)$ = Kin. energy broadening \propto foil size (A_f) and position (R_f) aperture size (A_a) and position (R_a)

 $\Delta E_m (E_n) =$ lon opt. energy broadening \propto magnet performance

The OMEGA MRS

The OMEGA MRS was fully installed and commissioned in Spring 2008

J.A. Frenje et al., Rev. Sci. Instrum. 79, 10E502 (2008)

Systematic uncertainties for the different MRS parameters and their contribution to the total systematic uncertainty

	Absolute	Low-Res [%]
Foil area uncertainty	±0.2 cm ²	±1.5
Foil distance uncertainty	±0.1 cm	±2.0
Number density uncertainty	±10 ²¹ cm ³	±1.3
Foil thickness uncertainty	±2.0 μm	±0.8
nd-cross section uncertainty $(1p, 0^{\circ})^{**}$	±12 mb/sr	±2.0
hd-cross section uncertainty	±36 mb/sr	±3.5
Magnet aperture area uncertainty	±0.1 cm ²	±1.0
Magnet aperture distance	±0.1 cm	±0.01
Total systematic uncertainty for		±3.7
Total systematic uncertainty for		±4.0
431		

$$\frac{\sigma_{Y_{1n}}}{Y_{1n}} \approx \sqrt{\left(\frac{\sigma_{A_f}}{A_f}\right)^2 + 4\left(\frac{\sigma_{R_f}}{R_f}\right)^2 + \left(\frac{\sigma_{n_i}}{n_i}\right)^2 + \left(\frac{\sigma_{t_f}}{t_f}\right)^2 + \left(\frac{\sigma_{d\sigma(p,0^\circ)}}{d\Omega_{lab}}\right)^2 + \left(\frac{\sigma_{A_a}}{A_a}\right)^2 + 4\left(\frac{\sigma_{R_a}}{R_a}\right)^2 \qquad \qquad \frac{\sigma_{dsf}}{dsf} \approx \sqrt{\left(\frac{\sigma_{d\sigma(1n,0^\circ)}}{\frac{d\Omega_{lab}}{d\Omega_{lab}}}\right)^2 + \left(\frac{\sigma_{d\sigma(n^\circ)}}{\frac{d\Omega_{lab}}{d\Omega_{lab}}}\right)^2 + \left(\frac{\sigma_{d\sigma(n^\circ)}}{\frac{d\Omega_{lab}}{\Omega_{lab}}}\right)^2 + \left(\frac{\sigma_{d\sigma(n^\circ)}}{\frac{d\Omega_{lab}}{\Omega_{lab}}}\right)^2 + \left(\frac{\sigma_{d\sigma(n^\circ)}}{\frac{d\Omega_{lab}}{\Omega_{lab}}}\right)^2 + \left(\frac{\sigma_{d\sigma(n^\circ)}}{\frac{d\Omega_{lab}}{\Omega_{lab}}}\right)^2 + \left(\frac{\sigma_{d\sigma(n^\circ)}}{\frac{d\Omega_$$

Y_{1n} determined from MRS (operated with a CD foil in Low-Res mode) is in good agreement with the nTOF data

The error bars shown in the ratio plot are due to an assumed 3% nTOF uncertainty, and a statistical of ~1% and a systematic uncertainty of 4% for the MRS

ρR data obtained from well established CPS** techniques were used to authenticate the MRS- ρR data obtained at OMEGA

^{**} CPS: Charged Particle Spectrometry C.K. Li et al., Phys. Plasmas 8, 4902 (2001).

ho R values inferred from the CPS and MRS techniques are in good agreement for low-ho R plastic implosions

ρR in cryogenic DT implosions are now routinely diagnosed using the MRS measured n' spectrum

ho R and ho R asymmetries in cryogenic DT implosions are diagnosed using CPS1, CPS2 and MRS

T.C. Sangster et al., accepted for publication in Phys. Plasmas (2010).

J.A. Frenje et al., accepted for publication in Phys. Plasmas (2010).

^{**} J.A. Frenje et al., Phys. Plasmas 16, 042704 (2009).

The NIF MRS

Different MRS configurations at the NIF will be used depending on application

	High-Res	Med-Res	Low-Res
Yield range Magnet distance to foil	10 ¹⁵ -10 ¹⁹	10 ¹⁴ -10 ¹⁸	<10 ¹⁴
Magnet aporturo area	(¹ ^a) 570	570	570
Equal $^{\circ}$ distance to TCC	$\binom{n}{a}$ 20	20	20
	(n _f) 26	26	26
Foll area	(A _f) 13	13	13
CD-fèil thickness	(<i>t_f</i>) 50	125	275
CH-foil thickness	(<i>t_f</i>) 100	250	500
ΔE_{MRS} (FWHM) at 14	MeV 490	920	1910
·· · · ·	400	020	ΙΟΙΟ
ε_{MRS} at 14 MeV**	2_10 ⁻¹¹	4_10 ⁻¹¹	8_10 ⁻¹¹

The NIF MRS

For maximum *S/B* and *S/N*, the NIF-MRS is fully enclosed by polyethylene shielding and positioned in the shadow of the NIF-target chamber

~6000 lbs of polyethylene shielding fully encloses the MRS to reduce the neutron fluence to the required level

OMEGA data and simulations indicate that the MRS will accurately diagnose THD and DT implosions at the NIF

The NIF MRS

23

<u>Statistical</u> uncertainty for the *dsf*, T_i and Y_{1n} as a function of neutron yield

 S_n : Down-scattered signal, which is to the 1st order proportional to $\rho R \, Y_{1n}$

- ΔE_{MRS} : MRS resolution at 14 MeV
- S_{1n} : Primary signal

B: Background , which is proportional to Y_{1n}

 $[\]Delta E_D$: Doppler width

<u>Statistical</u> uncertainty for *dsf*^{**} as a function of ρR and Y_{1n} for the MRS operated in Med-Res mode (THD and DT)

For DT an energy range of 5-12.5 MeV was used to determine the statistical uncertainty for *dsf* value. For THD an energy range of 9.5-12.5 MeV was used to determine the statistical uncertainty for *dsf* value.

The NIF MRS

Systematic uncertainties for the different parameters and their contribution to the total systematic error for the MRS High-Res, Med-Res and Low-Res mode

	Absolute	High-Res [%]	Med-Res [%]	Low-Res [%]
Foil area uncertainty	±0.3 cm ²	±2.3	±2.3	±2.3
Foil distance uncertainty	±0.1 cm	±0.4	±0.4	±0.4
Number density uncertainty	±10 ²¹ cm ³	±1.3	±1.3	±1.3
Foil thickness uncertainty	±2.0 mm	±2.0	±0.8	±0.4
nd-cross section uncertainty (1n)	±12 mb/sr	±2.0	±2.0	±2.0
nd-cross section uncertainty (<i>n'</i>)	±36 mb/sr	±3.6	±3.6	±3.6
Response function uncertainty	±10 keV	±2.1	±1.1	±0.6
Magnet aperture area uncertainty	±0.2 cm ²	±1.0	±1.0	±1.0
Magnet aperture distance uncertainty +0.		+0.02	±0.02	±0.02
Total systematic uncertainty for Y_n		±4.0	±3.6	±3.5
Total systematic uncertainty for dsf	-	±4.1	±4.1	±4.1
Lotal systematic uncertainty for I_i (@	5	±2.9	±6.4	±13.4

$$\frac{\sigma_{Y_{1n}}}{Y_{1n}} \sim \sqrt{\left(\frac{\sigma_{A_f}}{A_f}\right)^2 + 4\left(\frac{\sigma_{R_f}}{R_f}\right)^2 + \left(\frac{\sigma_{n_i}}{n_i}\right)^2 + \left(\frac{\sigma_{t_f}}{t_f}\right)^2 + \left(\frac{\sigma_{d\sigma(1n,0^\circ)}}{d\Omega_{lab}}\right)^2 + 4\left(\frac{\sigma_{A_a}}{A_a}\right)^2 + 4\left(\frac{\sigma_{R_a}}{R_a}\right)^2 - \frac{\sigma_{dsf}}{dsf} \sim \sqrt{\left(\frac{\sigma_{d\sigma(1n,0^\circ)}}{d\Omega_{lab}}\right)^2 + \left(\frac{\sigma_{d\sigma(n^\circ)}}{d\Omega_{lab}}\right)^2} - \frac{\sigma_{T_i}}{T_i} \sim \frac{2}{\left(\frac{\Delta E_{meas}}{\Delta E_{MRS}}\right)^2 - 1} \frac{\sigma_{\Delta E_{MRS}}}{\Delta E_{MRS}}$$

Basic science experiments relevant to stellar nucleosynthesis and ICF are being conducted / planned at OMEGA / NIF

- Measure the characteristics of the T(t,2n)⁴He reaction (an important mirror reaction to the ³He(³He,2p)⁴He reaction that is part of the p-p chain in hydrogen burning stars).
- Measure ³He(³He,2p)⁴He reaction (this can be done by turning the MRS into a charged-particle spectrometer).

R.N. Boyd, L. Bernstein and C. Brune, Physics Today 62, August (2009).

Basic science The 1st set of basic-science experiments, using the MRS, is focusing on studying the astrophysical S factor and reaction channels for the T(t,2n)⁴He reaction

At the NIF, we can study the T(t,2n)⁴He reaction at Gamow energies (E_G) of 10 - 40 keV Basic science Measurement of the T-T neutron spectrum at OMEGA suggests that the T-T reaction at 22 keV proceeds mainly through the direct three-body reaction channel –T(t,2n)⁴He

C. Wong et al., Nucl. Phys. 71(1965)106,

K. Allen et al., Phys. Rev. 82(1951)262,

V. Glebov et al., Bull. Am. Phys.Soc. (2008)

 $E_t = 500 \text{ keV} \rightarrow T(t,n)^5 \text{He} \sim 20\%.$ $E_t = 220 \text{ keV} \rightarrow T(t,n)^5 \text{He} \sim 5\%.$ $E_c \sim 20 \text{ keV} \rightarrow T(t,n)^5 \text{He} \sim 0\%.$

The astrophysical S factor for the T(t,2n)⁴He has been measured for the first time using an ICF facility (the OMEGA laser)

In contrast to the accelerator-based experiments, electron screening does not have an impact on the measured S factor

Summary

- An MRS has been successfully implemented and successfully used on OMEGA for diagnosing high-ρR cryogenic DT implosions.
- OMEGA-MRS data and simulations indicate that the NIF MRS will accurately diagnose THD / DT implosions.
- Basic science experiments relevant to stellar nucleosynthesis and ICF are being conducted and planned at OMEGA and NIF, respectively.