Theory & validation of electron-ion thermal relaxation in thermonuclear DT plasma for ICF

Guy Dimonte

Mix & Burn Project Leader, PEM / ASC

Los Alamos National Laboratory

Project Overview

Thermal Relaxation in plasmas

Thermonuclear burn & Ejecta

Opportunities @ LANL

LANL scientists strive to describe physical systems that depend on a wide variety of fundamental processes at various scales

2

We use high-resolution, 3D single-physics numerical simulations to clarify the physics assumptions in our application codes

Multi-physics codes describe macroscopic (dis-) assembly of applications Combine properties & transport rates for many different processes

> Hydrodynamic instabilities cause mix & reduce yield Mix can be adjusted to obtain observed yield But burn temperature smaller than observed But He³/D results differ from pure gases But ...

ICF capsule

Single-physics simulations clarify microscopic processes

Material properties & transport rates

Material strength & damage Transport from turbulent hydrodynamics Atomic mixing rates Electron-ion relaxation rates - v_{ie} Radiation transport in complex mixtures - κ DT fusion rates - $\langle \sigma v \rangle$ Alpha energy deposition

Physics issues are coupled using multi-scale computing up to 1 PetaFlop/s on Roadrunner Computer (LANL)

EST.1943

Thermonuclear burn in ICF plasma involves many collisional transport processes whose rates can be improved

because $v \propto T^{-3/2}$

Legacy calculations of temperature relaxation between electrons & ions diverge due to Coulomb force $\propto r^{-2}$

Particle collisions can be described by integrating Rutherford cross-section in Boltzman equation, but this diverges due to distant encounters

Plasma fluctuations ($\epsilon(k,\omega) \sim 0$) due to discrete electrons & ions are described by Lenard-Balescu, but this diverges due to close encounters

EST.1943

NIF capsule traverses many difficult plasma regimes, but ignition plasma has three simplifying characteristics

ICF codes should treat ALL regimes with unified theory that includes particle correlations (g) & quantum diffraction (λ_{o}) & statistics (T_F)

NATIONAL LABORATORY EST. 1943 Theory was developed to describe temperature relaxation that includes degeneracy & particle correlations self-consistently

Ion temperature in a spatially uniform, unmagnetized plasma depends on work done on ions (M, n_i , T_i) by electrons (m, $n_e = Z n_i$, T_e)

Fourier (ω , k) components of fluctuating ion current δj_i & e-i force δF_{ie} are given by

Continuity equation: $\delta \vec{j}_i(k,\omega) = \omega \delta n_i(k,\omega) \vec{k}/k^2$ **Gauss' law:** $\delta \vec{F}_{ie}(k,\omega) = i\vec{k} V_{ie}(k) \delta n_e(k,\omega)$ Fourier transform of interaction potential $V_{ie} \propto 1/k^2$

 $\delta j_i \& \delta F_{ie}$ depend on self-consistent density fluctuations $\delta n_{\alpha} \&$ plasma susceptibility χ_{α} for each species α , and we assume a linear response

Coupling between ion & electron subsystems is relatively slow due to small mass ratio m/M & this allows tractable solution

Linear response for density fluctuations introduces total dielectric $D(k, \omega)$

 $\frac{3}{2}n_i\frac{dT_i}{dt} = \pi \int \frac{d^3k}{(2\pi)^3} \int d\omega \frac{V_{ie}(k)}{\left|D(k,\omega)\right|^2} \left[T_i \operatorname{Im} A_{ei}(k,\omega) \operatorname{Im} \chi_i(k,\omega) - T_e \operatorname{Im} A_{ie}(k,\omega) \operatorname{Im} \chi_e(k,\omega)\right]$

ABSORPTION - EMISSION of plasma fluctuations

where $A_{\alpha\beta} \equiv u_{\alpha\beta} \chi_{\alpha} \left(1 - u_{\beta\beta} \chi_{\beta}\right), \quad D \equiv \left(1 - u_{ee} \chi_{e}\right) \left(1 - u_{ii} \chi_{i}\right) - u_{ei} u_{ie} \chi_{e} \chi_{i}, \quad u_{\alpha\beta} \equiv V_{\alpha\beta} \left(1 - G_{\alpha\beta}\right)$

 ω -integration is greatly simplified by the small mass ratio m / M << 1

Electron response near $\omega_{pi} \ll \omega_{pe} \Rightarrow \chi_e(\mathbf{k}, \omega) \sim \chi_e(\mathbf{k}, \mathbf{0})$ Ion response evaluated using f-sum rule: $\int d\omega (f_{abs} - f_{ems}) \propto n_e$ Removes i - i interactions \Rightarrow NO ion screening Like Bethe stopping power & TBK sum-rule in spectroscopy

Result reduces to familiar relaxation rate $v_{ei} = v_o \ln \Lambda$ but with a generalized Coulomb log that includes ALL physics self-consistently

Short-range i-e correlations (pair distribution function \Rightarrow G_{ie})

$$\ln \Lambda = \int_{0}^{\infty} \frac{dk}{k} \frac{1 - G_{ie}(k,0)}{|\varepsilon_{e}(k,0)|^{2}} f\left(\frac{k}{2}\right) \leftarrow \begin{array}{c} \textbf{Quantum Mechanics} \\ \text{Diffraction } (\lambda_{Q}) \\ \text{Statistics } (E_{F}) \end{array}$$
Electron dielectric (screening modified by e-e correlations $\Rightarrow G_{ee}$)
$$\begin{array}{c} \textbf{MOS} \end{array}$$

9

We used plasma MD simulations to test comprehensive model

MD simulations provide ab-initio transport rates with high accuracy

Classical e's & ions with Coulomb force $N_{particles} \Rightarrow 10^{6} \& \delta t \Rightarrow 10^{-3}/\omega_{pe}$ for convergence Can discern non-exponential decay due to $v(T_{e})$

$$(Z+1) v_{e-i}(T_{eo}) t = 1 - T + \varepsilon \ln\left(\frac{\varepsilon - 1}{\varepsilon - T}\right) \quad where \quad \varepsilon \equiv \frac{Z + T_{io} / T_{eo}}{1 + Z}$$

Coulomb log agrees with D & D theory

- Reduces to classical (KA '63, BPS '08) & quantum (Larkin '60) limits for weak coupling
- Extends results to finite coupling $g \Rightarrow 20$

Dimonte & Daligault, Phys Rev Lett 101, 135001 (2008)

Thermonuclear (TN) burn in DT plasma involves many complex processes of comparable time scales that compete with dis-assembly

We couple hydrodynamics & molecular dynamics codes to study Richtmyer-Meshkov instability over variety of scales & conditions

Proton radiography exp's Buttler et al.

Hydro simulations with perfect elastic-plastic, Terrones

> MD simulations to atomic scale Germann & Cherne

γ-fluids on FLASH (UC) Ramaprabhu

Cardina and Cardina and Cardina

We solve complex physical problems for National Security

Multi-physics codes describe complex physical phenomena in HED regime Defense, energy, astrophysics, climate, biology ...

High-resolution, single-physics simulations clarify fundamental properties

Turbulent hydrodynamics Particle-in-cell (collective plasmas) Molecular dynamics (HED properties) Monte Carlo methods (transport) Theory

World-class computing & experimental facilities

Roadrunner @ 1 PetaFlop/s Proton-Radiography NIF (LLNL) & Ω (UR)

LANL jobs are challenging, relevant, stable & justly compensated

Annualized salaries

	a second
Management i = 1, 6	+ 25 %
Scientist 5	~ \$ 167 k
Scientist 3	~ \$ 112 k
Post-docs	\$ 70 - 85 k
Graduates	\$ 45 - 60 k
Undergraduates	\$ 20 - 40 k

