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SN explosion

LANL scientists strive to describe physical systems that depend
on a wide variety of fundamental processes at various scales

M m

ICF implosion

m m

Hydrodynamics Complex EOS
Solid state properties Fluid turbulence
Warm-dense-matter Plasma physics
Radiation transport Opacity
Nuclear reactions       ⇒ Hydrodynamics

SN
light

curves

Normalized to
Standard Candles

Tell us of accelerating
expansion of universe
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We use high-resolution, 3D single-physics numerical simulations
to clarify the physics assumptions in our application codes 

Multi-physics codes describe macroscopic (dis-) assembly of applications
Combine properties & transport rates for many different processes

Hydrodynamic instabilities cause mix & reduce yield
Mix can be adjusted to obtain observed yield
But burn temperature smaller than observed
But He3/D results differ from pure gases
But …

Single-physics simulations clarify microscopic processes
Material properties & transport rates

Material strength & damage
Transport from turbulent hydrodynamics
Atomic mixing rates
Electron-ion relaxation rates - νie

Radiation transport in complex mixtures - κ
DT fusion rates - 〈σv〉
Alpha energy deposition
…

Continuum
scale

Atomistic
scale

ρ
V
T

〈σv〉
νie
κ

ICF capsule



4

Continuum simulation of NIF implosion
Hydrodynamics, EOS, radiation transport, nuclear
Assumes Maxwellian fluids & Spitzer collisions 

PIC simulation of TN plasma
Macro-particles with TN burn
Kinetic & collective effects
Assumes Spitzer collisions 

MD simulation of hot plasma
Electrons & ions with Coulomb potential
Validates new statistical collision theory

Physics issues are coupled using multi-scale computing
up to 1 PetaFlop/s on Roadrunner Computer (LANL)

100 µm

NP
1/2 λD ~ 10 µm

(NP/4n)1/3 ~ 0.03 µm
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Thermonuclear burn in ICF plasma involves many collisional
transport processes whose rates can be improved 
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Transport rates depend on long-range
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Maxwellian electrons & ions
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Legacy calculations of temperature relaxation between electrons
& ions diverge due to Coulomb force ∝ r-2 
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Particle collisions can be described by integrating Rutherford cross-section
in Boltzman equation, but this diverges due to distant encounters
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Spitzer:

Landau:

Chandrasekhar:

λDe
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Plasma fluctuations (ε(k,ω) ~ 0) due to discrete electrons & ions are
described by Lenard-Balescu, but this diverges due to close encounters
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Need to capture close & distant encounters self-consistently

 bmin ~ 1 / kmax 
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NIF capsule traverses many difficult plasma regimes, but ignition
plasma has three simplifying characteristics

  

 

T
e

> T
F

=
!
2

2mk
B

3!
2
n( )

2 / 3

ne (cm-3)
1018 1020 1022 1024 1026

0.1

1

10

102

103

104

105

Te
(eV)

g = 1

TF
g = 10-3

DT

CH

Weakly coupled plasma

Quantum diffraction

Maxwellian distribution

 

g !
Ze

2

"DekBT
=
RL

"De

<<1

RL = Ze
2
/kBTe

"De = kBTe /4#nee
2

  

 

!Q = ! / mkNTe >1.67RL

Te > 2.8
me

4

kB !
2

= 76eV

ICF codes should treat ALL regimes with unified theory that includes
particle correlations (g) & quantum diffraction (λQ) & statistics (TF)

Brown
Dwarf

Sun

Laser Exps

λQ > RL

Jupiter



8

Theory was developed to describe temperature relaxation that
includes degeneracy & particle correlations self-consistently

Ion temperature in a spatially uniform, unmagnetized plasma depends
on work done on ions (M, ni, Ti) by electrons (m, ne = Z ni, Te)
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Fourier (ω, k) components of fluctuating ion current δji & e-i force δFie
are given by

Jerome Daligault
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Mean field assumes particles are allowed
everywhere with equal probability
⇒ 'pair distribution' gie(r) = 1

Spontaneous Induced

'Local field correction' Gαβ related
to Fourier transform of gie(r)
⇒ Gαβ = 1 when particles excluded

Fourier transform of
interaction potential

Vie ∝ 1 / k2
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Continuity equation:
Gaussʼ law:   
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δji & δFie depend on self-consistent density fluctuations δnα & plasma 
susceptibility χα for each species α, and we assume a linear response
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Coupling between ion & electron subsystems is relatively slow
due to small mass ratio m/M & this allows tractable solution

Linear response for density fluctuations introduces total dielectric D(k, ω)
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ω -integration is greatly simplified by the small mass ratio m / M << 1
Electron response near ωpi << ωpe ⇒ χe(k, ω) ~ χe(k, 0)

Ion response evaluated using f-sum rule:

Result reduces to familiar relaxation rate νei = νo lnΛ but with a
generalized Coulomb log that includes ALL physics self-consistently
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Electron dielectric (screening modified by e-e correlations ⇒ Gee)

Short-range i-e correlations (pair distribution function ⇒ Gie)

Quantum Mechanics
Diffraction (λQ)
Statistics (EF)
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ABSORPTION - EMISSION of plasma fluctuations

Removes i - i interactions
   ⇒ NO ion screening
Like Bethe stopping power &
TRK sum-rule in  spectroscopy

Daligault & Dimonte, Phys Rev E 79, 56403 (2009)
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We used plasma MD simulations to test comprehensive model

 MD simulations provide ab-initio transport rates with high accuracy 
Classical e's & ions with Coulomb force 
Nparticles ⇒ 106 & δt ⇒ 10-3/ωpe for convergence
Can discern non-exponential decay due to ν(Te)
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Coulomb log agrees with D & D theory
- Reduces to classical (KA '63, BPS '08) & 
  quantum (Larkin '60) limits for weak coupling
- Extends results to finite coupling g ⇒ 20

NO D-H screening for νie
OK for electrical conductivity

Dimonte & Daligault, Phys Rev Lett 101, 135001 (2008)
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Thermonuclear (TN) burn in DT plasma involves many complex processes
of comparable time scales that compete with dis-assembly
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Bowers et al., Phys Plasma 15, 55703 (08) 
Kinetic ions, D, T, α's
Fluid electrons
Radiation energy sink

Need to couple
results to ICF
design code

Brian Albright
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We couple hydrodynamics & molecular dynamics codes to study
Richtmyer-Meshkov instability over variety of scales & conditions

9501

Sn
Ti

Al

pRad

Proton radiography exp's
Buttler et al. Hydro simulations with

perfect elastic-plastic,
Terrones

γ-fluids on
FLASH (UC)
Ramaprabhu

MD simulations to
atomic scale

Germann & Cherne
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Multi-physics codes describe complex physical phenomena in HED regime
Defense, energy, astrophysics, climate, biology …

High-resolution, single-physics simulations clarify fundamental properties
Turbulent hydrodynamics
Particle-in-cell (collective plasmas)
Molecular dynamics (HED properties)
Monte Carlo methods (transport)
Theory

World-class computing & experimental facilities
Roadrunner @ 1 PetaFlop/s
Proton-Radiography
NIF (LLNL) & Ω (UR)

We solve complex physical problems for National Security

dimonte@lanl.gov
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LANL jobs are challenging, relevant, stable & justly compensated 

Undergraduates $ 20 - 40 k

Graduates $ 45 - 60 k

Post-docs $ 70 - 85 k

Scientist 3 ~ $ 112 k

Scientist 5 ~ $ 167 k

Management i = 1, 6     + 25 %

Annualized salaries

Range ~ ± 25 %


