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LANL scientists strive to describe physical systems that depend
on a wide variety of fundamental processes at various scales
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We use high-resolution, 3D single-physics numerical simulations
to clarify the physics assumptions in our application codes

Multi-physics codes describe macroscopic (dis-) assembly of applications
Combine properties & transport rates for many different processes
Hydrodynamic instabilities cause mix & reduce yield
Mix can be adjusted to obtain observed yield
But burn temperature smaller than observed
But He?®/D results differ from pure gases
But ...

ICF capsule
Single-physics simulations clarify microscopic processes

Material properties & transport rates
Material strength & damage Continuum
Transport from turbulent hydrodynamics scale
Atomic mixing rates
Electron-ion relaxation rates - v,

Radiation transport in complex mixtures -
DT fusion rates - (oVv)
Alpha energy deposition
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Physics issues are coupled using multi-scale computing
up to 1 PetaFlop/s on Roadrunner Computer (LANL)

Continuum simulation of NIF implosion

Hydrodynamics, EOS, radiation transport, nuclear

100 Assumes Maxwellian fluids & Spitzer collisions

PIC simulation of TN plasma

Macro-particles with TN burn
Np'2 Ap ~ 10 pm. Kinetic & collective effects

Assumes Spitzer collisions

MD simulation of hot plasma

Electrons & ions with Coulomb potential (N/4n)!"® ~ 0.03 um

Validates new statistical collision theory




Thermonuclear burn in ICF plasma involves many collisional
transport processes whose rates can be improved
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Coulomb collisions
Maxwellian electrons & ions

Uncertainty in Coulomb log

Thermal relaxation
Thermal conductivity
Electrical conductivity
Radiative
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Legacy calculations of temperature relaxation between electrons
& ions diverge due to Coulomb force o r2

Particle collisions can be described by integrating Rutherford cross-section
in Boltzman equation, but this diverges due to distant encounters
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Plasma fluctuations (g(k,m) ~ 0) due to discrete electrons & ions are
described by Lenard-Balescu, but this diverges due to close encounters
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Need to capture close & distant encounters self-consistently




NIF capsule traverses many difficult plasma regimes, but ignition
plasma has three simplifying characteristics
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ICF codes should treat ALL regimes with unified theory that includes
particle correlations (g) & quantum diffraction (Ay) & statistics (Tg)




Theory was developed to describe temperature relaxation that
includes degeneracy & particle correlations self-consistently

lon temperature in a spatially uniform, unmagnetized plasma depends
on work done on ions (M, n,, T,) by electrons (m,n,=2n,, T,)
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Fourier (o, k) components of fluctuating ion current §j, & e-i force oF,,
are given by

Continuity equation: 5],.(16,0)) _ w5ni(k,w)E/k2 Fourier transform of

- - interaction potential
Gauss’ law: OF, (k.w)=ikV, (k)on, (ko) Vo 1/Kk2

dj; & OF,, depend on self-consistent density fluctuations 6n, & plasma
susceptibility x, for each species o, and we assume a linear response

Spontaneous Induced
on, (k.w)=n, — <na > =on, + X, ZVaﬁ on g [1 — Gy (k,a))]
B=e,i
Mean field assumes particles are allowed 'Local field correction’ G related
everywhere with equal probability to Fourier transform of g,.(r)

= 'pair distribution’ g,.(r) = 1 = G,; =1 when particles excluded



Coupling between ion & electron subsystems is relatively slow
due to small mass ratio m/M & this allows tractable solution

Linear response for density fluctuations introduces total dielectric D(k, w)
E dr, J' d’k J V. (k)
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w-integration is greatly simplified by the small mass ratiom /M << 1

Electron response near o, << ®,, = X.(k, ®) ~ x(k, 0) Removes i - i interactions
= NO ion screening

lon response evaluated using f-sum rule: J A0 (= foms) <1, | Like Bethe stopping power &
TRK sum-rule in spectroscopy

Result reduces to familiar relaxation rate v, = v, InA but with a
generalized Coulomb log that includes ALL physics self-consistently

Short-range i-e correlations (pair distribution function = G.,)

Py Diffraction (Aq)

nA = T dk 1- G,e(k O) [l;] Quantum Mechanics
Statistics (Ef)

Electron dielectric (screening modified by e-e correlations = G,,)

Daligault & Dimonte, Phys Rev E 79, 56403 (2009) 9



We used plasma MD simulations to test comprehensive model

MD simulations provide ab-initio transport rates with high accuracy

Classical e's & ions with Coulomb force
N
Can discern non-exponential decay due to v(T,)

varticles = 10° & 8t = 10%/w,, for convergence
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Coulomb log agrees with D & D theory

- Reduces to classical (KA '63, BPS '08) &
quantum (Larkin '60) limits for weak coupling

- Extends results to finite coupling g = 20
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Thermonuclear (TN) burn in DT plasma involves many complex processes
of comparable time scales that compete with dis-assembly

Use VPIC code to simulate infinite o stopping moderates TN burn
D-T plasma @ p =100 g/cc, T = 10 keV Brian Albright
Bowers et al., Phys Plasma 15, 55703 (08) %
Y4
Kinetic ions, D, T, a's B’ <T> D
Fluid electrons % T
Radiation energy sink Gé_ T =0 To. )
2 electron

o's couple first to electrons,
then to ions as T increases Time (ns)

T ~ — fi(e) D & T distributions differ
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We couple hydrodynamics & molecular dynamics codes to study
Richtmyer-Meshkov instability over variety of scales & conditions

Proton radiography exp's

Hydro simulations with
Buttler et al. ydro s ons

perfect elastic-plastic,
Terrones

MD simulations to

= atomic scale
Germann & Cherne

v-fluids on
FLASH (UC)
Ramaprabhu
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We solve complex physical problems for National Security

Multi-physics codes describe complex physical phenomena in HED regime
Defense, energy, astrophysics, climate, biology ...

High-resolution, single-physics simulations clarify fundamental properties
Turbulent hydrodynamics

Particle-in-cell (collective plasmas)
Molecular dynamics (HED properties)

Monte Carlo methods (transport)
Theory

World-class computing & experimental facilities
Roadrunner @ 1 PetaFlop/s

Proton-Radiography
NIF (LLNL) & Q (UR)

dimonte@lanl.gov
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LANL jobs are challenging, relevant, stable & justly compensated

Annualized salaries

Undergraduates
Graduates
Post-docs
Scientist 3
Scientist 5

Managementi=1,6

$20-40k
$45-60k
$70-85k

~$112k

~$ 167 k Range ~ + 25 %

+ 25 %
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