Target Basics

Brent Blue General Atomics

Omega Laser Facility Users Group Workshop April 28th, 2010

What makes a successful experiment?

Results

Knowledge of a real target is critical to experimental success

Hohlraum wall

Experiment

R&D is the first step in the target production timeline

Engage target fabrication early

NLUF AstroShock targets required significant R&D to determine if we could even make the targets

It's now time to specify the target

- Design Finalized!
- We know that we can make it
 - All R&D completed
- Enough time to make, nominally 3 months
 - Can be longer for complex parts
- All parameters specified
 - Dimensions
 - Materials
 - Tolerances
 - Metrology

OMEGA target request process starts with the target request form: TRF

eneral Assemb	ly Final Dat	ta Lab Coordinator Pla	n Summary	Feedback	Help			
			Go To Order #	296 Ver	sion: Original			
				ShotDate: 05/0	Contraction and the second			
			Experiment	Shot Name: Diag	Dev-CIS-09A			
			Hel	p with this f	orm			
***				**				
*Experiment Shot Name	DiagDev-CIS	-09A		Labo	ratory LLE	· · ·		
*Experiment Series	Fast Ignition	•		*Coord	linator Bonino, N	Mark	•	
*Sub-Program	NIC-Dev	-		*Shot	acility Omega	•		
*Program	NIC-DDI 🔻				ot Date 05/06/200	09		
				Total N	mber 5			
					Shots ⁵			
*PI Name		Phone #	E-Mail					
Theobald, Wolfga	ng 🔻	585-273-2628	wthe	@lle.rochester.	edu			
Stoeckl, Christian		585-273-2633	csto(lle.rochester.e	du			
Fully Assembled T	arget ID					1		
						-		
*Brief Target or Co	mponent Des	cription Cu Cone & Shel	l, old name is Ir	nt-FI-09D				
lote: Fields marked	d with * are se	earchable.						
					-h Descent			
		Г	Attached Docu		ch Document			
			Forma	Drawing Num	ber Description			
			Edit PPT	NA		1		

OMEGA target request process starts with the target request form: TRF

Component Type		Fab. Center	В	est Effort	
Order	🖲 GA 🔘 Non-GA	-	None	-	
General Descriptor	.	WONO			
Primary Descriptor	-	GA Order			
Usage	🖲 External 🔘 Internal	Customer #			
	Edit/Add Rem	ove Clear	Edit Area		

Check here if any component requires assembly

	GA	Fab Center	Component Type	General Descriptor	Primary Descriptor	Group	Secondary Descriptor	Due date	Qty.	Usage	Best Effort	WONO	GA Order	Cust.#		
Edit	GA	IDC	Capsule	сн	CHsingle	A	40 micron SCD to CPM, 2 racks of 12	03/06/2009	24	Internal	None	C30272-9570	IDC-LLE- 296-Int- FI-09D Rev 0		Order Specs	Status
Edit	GA	IDC	Capsule	сн	CHsingle	A	40 micron SCD for TCC and neutronics reference	04/06/2009	7	External	None	C30272-9570	IDC-LLE- 296-Int- FI-09D Rev 0		Order Specs	Status
Edit	GA	СРМ	Micromachining	Cone/Shield	Cone	A B C	20 mic thick Cu Cone 25 mic thick Cu Cone 30 mic thick Cu Cone	04/13/2009 04/13/2009 04/13/2009	5	External	None	C30272.9490	COM-Int- FI-09D Cone & Shell	Int-FI-09D	<u>Order</u> Specs	<u>Status</u>
Edit	GA	DDC	Capsule	Cryo	SCD	A	CD shells	04/16/2009	6	External	None	C30272 3020	DDC 296 DiagDev- CIS-09A		<u>Order</u> Specs	<u>Status</u>

Clear

Query

Save as New

2008 Laboratory for Laser Energetics

Update

High level scheduling completed in close partnership with laboratory POCs, TFEs, and PIs

OMEGA change control board process

- Discuss all OMEGA targets:
 - Track status
 - Flag and resolve issues
 - Planning

Hohlraum and capsule production require precision mold manufacture, diverse coating and multi characterization capabilities

Diamond turning machining, capable of sub-micron accuracy

- GA has 9 diamond turning lathes7 General purpose
 - 1 Beryllium
 - 1 Uranium

SNRT target on the back of a penny

Precision milling allows us to make 3D shapes with micron accuracy

Sample of component variety shipped Q1-FY09

http://fusion.gat.com/ift/ICF_Catalog/index.html

Many elements and compounds can be coated onto targets

Aluminum Boron **Boron Carbide Boron Nitride** Carbon Chromium Copper Dysprosium Gadolinium Gold Boron Iridium Iron Manganese Molybdenum Neodymium Nickel Scandium Silicon Silver Silicon Dioxide Tantalum Tellurium Tin Titanium **Titanium Dioxide** Tungsten Vanadium Zinc

Electroplating

Gold Copper

Atomic Layer Deposition (ALD)

GA produces many plastic, glass, foam, and Beryllium capsules

Seneral Atomics

Metrology: the final critical fabrication step

	Group B Clumpy Aluminum Oxide Ball Target										
No.	Specification	Value	Specification Tolerance ±	B1	B2	В3	B4	B5	B6	Meas. Error±	Note
1	Foam Density (mg/cc)	300	30	296	296	296	296	294	294	4	Batch average: Measured on 2 witness pieces of foam for each batch
2	Z Distance from center of ball to drive face (um)	900	200	980	1117	1159	1113	976.3	885.32	10	Measured by radiography
3	Distance of ball center from axis of foam (um)	0	500	346	269	178	82	384.45	254.75	20	Measured by radiography
5	Diameter of Foam Cylinder (mm)	3.9	0.2	3.92	3.84	3.91	3.88	3.69	3.69	0.02	
6	Minimum Length of Foam Cylinder (mm)	5	1	6.0	6.1	5.7	5.8	5.9	5.4	0.1	Length must be >4000um, foam may have rough edge on the end of the foam (but drive face will be smooth)
7	Maximum deviation from Flatness (um)	<30									Best effort; Measured on drive side face on a sampling of targets at Alberquerque
8	Ball clump/distribution diameter (um)	1000	NA	1172	1035	1063	1062	911	903	200	
10	Number of balls in clump (#)	46	5	37	46	21	34	30	43		
11	Ball diameter (um)	130	NA	130	130	130	130	130	130		
	ball material	Ruby (Al2O3 + <0.05% Cr)									
	Batch ID Number			RF090616-A	RF090616-B	RF090616-C	RF090616-D	RF090430-B	RF090430-D		

Know what you are shooting before the shot

Target destroyed

Can't go back

General Atomics IFT has an experienced ICF target fabrication team

GA staff are both in San Diego and onsite at various facilities

GA produces targets for all the major NNSA ICF facilities

• Three major new ICF facilities

- The facilities use thousands of high precision targets/year
 - OMEGA ~ 4000 targets/year
 - ZR ~ 200 targets/year
 - NIF ~ many hundreds targets/year

GA has over 19 years of ICF target fabrication experience

GA annually produces thousands of components for OMEGA under a stringent Quality Management System

- Reliable fabrication of 4,000 components/year for ~70 categories
- ISO 9001:2000 sets a management structure
 - Customer interactions
 - Change controls
 - Documented work procedures
 - Regular internal/external audits
 - Quality Control
 - Staff training and publications
 - Quality Assurance
 - Management Review

Year

Continual Improvement is a Key Objective

Quality targets for quality experiments

Results

