Status of Integrated Fast- and Shock-Ignition Experiments on OMEGA

W. Theobald
University of Rochester
Laboratory for Laser Energetics

CD shell \(\sim 870-\mu \text{m diam} \)
Driver energy \(\sim 18 \text{ kJ} \)
Short pulse \(\sim 1.3 \text{ kJ} \)
Pulse duration \(\sim 10 \text{ ps} \)
Focus \(\sim 40-\mu \text{m diam} \)

No short pulse

With short pulse

Omega Laser Facility
Users’ Group Workshop
Rochester, NY
29 April – 1 May 2009
Summary

Fast and shock ignition are investigated on the Omega Laser Facility

• Integrated cone-in-shell fast-ignition experiments with up to 1.3 kJ of short-pulse energy and ~18 kJ of long-pulse energy have begun.

• A significant increase in x-ray emission is measured with the higher OMEGA EP laser energy.

• Neutron measurements are challenging due to a strong x-ray background and mitigation techniques are discussed.

• Experiments with shock-ignition pulses show a 4× improvement in yield and 30% more areal density compared to conventional pulses.

• Shock-ignition experiments with 40 beams for fuel assembly and 20 delayed high-intensity beams show significant coupling of shock- and fast-electron energy into the target.

Two-step ignition processes offer the possibility of higher target gain for a fixed laser energy.
Collaborators

Laboratory for Laser Energetics and Fusion Science Center, University of Rochester
*Also Depts. of Mechanical Eng. and Physics, University of Rochester

J. A. Frenje and R. D. Petrasso
Plasma Science and Fusion Center
Massachusetts Institute of Technology

P. A. Norreys
Rutherford Appleton Laboratory

D. Hey, A. J. MacKinnon, and P. K. Patel
Lawrence Livermore National Laboratory

R. B. Stephens
General Atomics
Fast and shock ignition can trigger ignition in massive (slow) targets leading to high gains.

- **Potentially high gains, stable implosions**
 - Gain $G \sim 50$
 - 1-D maximum gain if ignition occurs $\sim \frac{1}{V_i^{1.3}}$
 - Accessible by fast and shock ignition

- **Conventional hot-spot ignition**
 - $V_{\text{min}} \sim 3 \times 10^7$
 - Hot-spot ignition fails
 - $V_{\text{max}} \sim 5 \times 10^7$
 - Quenching by hydro-instabilities

$E_{\text{laser}} = 1 \text{ MJ}$
Integrated fast-ignition experiments with re-entrant cone targets have begun at the Omega/Omega EP Laser Facility.

Energy

$$\sim 18 \text{ kJ (54 beams)}$$

Wavelength

$$351 \text{ nm}$$

Pulse shape

Low-adiabat, $$\alpha \approx 1.5$$

Pulse duration

$$\sim 3 \text{ ns}$$

Implosion velocity

$$\sim 2 \times 10^7 \text{ cm/s}$$

Shell material

CD

Shell diameter

$$\sim 870 \mu m$$

Shell thickness

$$\sim 40 \mu m$$

Shell fill

Empty

Cone material

Gold

Energy

$$\sim 1.3 \text{ kJ}$$

Wavelength

$$1053 \text{ nm}$$

Pulse duration

$$\sim 10 \text{ ps}$$

Intensity

$$\sim 1 \times 10^{19} \text{ W/cm}^2$$

Target focal spot, log scale

- **Energy**
 - ~18 kJ (54 beams)
- **Wavelength**
 - 351 nm
- **Pulse shape**
 - Low-adiabat, $$\alpha \approx 1.5$$
- **Pulse duration**
 - ~3 ns
- **Implosion velocity**
 - ~2 × 10^7 cm/s

J. Bromage et al., Opt. Express 21, 16,561 (2008).
The cone has to withstand the plasma pressure up to peak compression, ensuring a plasma-free path for the short-pulse beam.

- Streaked optical pyrometer (SOP) measures the breakout through 15-μm-thick cone tip.
- Shock breakout at 3.50±0.05 ns is close to peak compression.
- Areal density from 2-D hydrocode simulations.
- Time of \((\rho R)_{\text{max}}\) is close to optimum injection time for fast electrons.
Pointing and timing of the short-pulse beam was achieved with ~20-μm and ~50-ps accuracy.

Drive laser only (18 kJ, spherical shell)

Short pulse only
Black + target chamber center
Red + nominal OMEGA EP pointing

Two orthogonal x-ray pinhole camera views provide the spatial information

- The neutron temporal diagnostic operating in hard x-ray mode provides temporal information
- Measured time of short-pulse interaction: 3.50±0.05 ns
A significant increase in x-ray emission is measured with higher OMEGA EP laser energy.

Time-integrated x-ray pinhole images $E_{ph} = 2$ to 7 keV, $\Delta t = 3.5$ ns
No significant change in x-ray emission was measured for various time delays and 500 J short-pulse energy.

- X-ray pinhole images (1 × 1-mm regions, 2 to 7 keV)
- Shell peak compression and shock breakout inside cone is at ~3.5 ns
Neutron measurements are challenging in fast-ignition integrated experiments because of a strong x-ray background.

Fast electrons streaming through the high-Z cone material produce a significant γ pulse that overwhelms the neutron time-of-flight diagnostics for $E > 500$ J.
The neutron detectors are strongly affected by the hard-x-ray background.
Integrated 2-D hydrodynamic DRACO/LSP simulations were performed for various experimental conditions.

- 20° half-divergence angle of electron beam
- Calculations do not account for transport through cone wall
- 15-μm gold wall thickness will have significant effect on energy transport
- The expected n yields below 1 kJ are in the range of the current noise level of 12-m NTOF
A liquid scintillator neutron time-of-flight detector is being developed to suppress the x-ray background induced fluorescence.

Liquid scintillators with a molecular O₂ quenching agent have a fast decay time and are promising detectors to measure the D₂ neutron yield.

Courtesy of Ronald Lauck, PTB (Physikalisch Technische Bundesanstalt, Braunschweig, Germany).
Copper cone targets will be tested in future experiments

- Reduced x-ray bremsstrahlung emission
- Improved fast-electron energy transport through cone wall for lower-Z elements

Cone type	**t (μm) wall thickness**	**d (μm) tip diameter**	**Φ (°) full cone angle**
I | 20 | 20 | 34
II | 25 | 40 | 40
III | 30 | 60 | 46
A Kirkpatrick–Baez x-ray microscope with a WB$_4$C multilayer mirror will image the Cu K-shell emission.

\(K\alpha\) emission from Cu-doped CH shells will be used to infer fast-electron heating

- ITS Monte Carlo code simulations by A. MacKinnon and D. Hey assuming 1% atomic Cu in 40 \(\mu m\) CH shell

- Predicted good signal level for KB instrument
Shock ignition relies on a shaped laser pulse with a trailing high-intensity spike.

The ignitor shock wave significantly increases its strength as it propagates through the converging shell.
CH shells have been imploded on OMEGA to test the performance of shock-ignition pulse shapes.

\[E_L = 19 \text{ kJ}, \alpha = 1.3, \quad V_i = 1.7 \times 10^7 \text{ cm/s}, \text{ SSD off} \]

\[Y_n = 2 \pm 0.2 \times 10^9 \]

\[Y_n = 8 \pm 0.8 \times 10^9 \]

The neutron yield increases considerably when a shock is launched at the end of the pulse.
The shock-ignition pulse-shape implosions show improved areal densities and neutron yields.

- The measured-to-calculated neutron-yield ratios are close to 10% for a hot-spot convergence ratio of 30.
Laser–plasma interaction during the spike pulse and hot-electron generation are important issues for shock ignition.

Shock-ignition target with 350-kJ total energy

- Laser intensity I_{Laser}
- Density ρR

ρR range of 100 keV e^-

Shock-launching time (ns)

- 1-D 350 kJ
- Marginally igniting (no hot e^-)
- Boosted margin (with hot e^-)

Hot e^- with Maxwellian $T_{\text{hot}} = 150$ keV, $E_{\text{hot}} = 17\%$ of spike energy, treated using a multigroup diffusion model*

*LILAC simulations by C. D. Zhou and R. Betti
Hot-electron generation and laser–plasma instabilities are studied at ignition-relevant spike intensities

- 60 OMEGA beams are split into 40 low-intensity drive beams and 20 tightly focused, delayed beams (up to 2×10^{16} W/cm2)
- Hydrodynamic performance and laser backscattering are studied
- Preliminary results are moderate $T_{\text{hot}} \sim 45$ keV, $\sim 10\%$ conversion efficiency $E_{\text{spike}} \rightarrow E_{\text{hot}}$, $\sim 20\%$ backscattering at 5×10^{15} W/cm2 (SRS + SBS)
A significant coupling of high-intensity-pulse energy into the capsule is measured, despite a large target-illumination nonuniformity.

- ~10% power imbalance in current experiment
- Repointing the beams will reduce power imbalance to 2%, similar to spherical 60-beam illumination conditions
Fast and shock ignition are investigated on the Omega Laser Facility

- Integrated cone-in-shell fast-ignition experiments with up to 1.3 kJ of short-pulse energy and ~18 kJ of long-pulse energy have begun.

- A significant increase in x-ray emission is measured with the higher OMEGA EP laser energy.

- Neutron measurements are challenging due to a strong x-ray background and mitigation techniques are discussed.

- Experiments with shock-ignition pulses show a 4× improvement in yield and 30% more areal density compared to conventional pulses.

- Shock-ignition experiments with 40 beams for fuel assembly and 20 delayed high-intensity beams show significant coupling of shock- and fast-electron energy into the target.

Two-step ignition processes offer the possibility of higher target gain for a fixed laser energy.