Investigation of shock-wave heating and compression
in direct-drive planar targets using absorption

spectroscopy on OMEGA
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Summary

T, and p in the Warm Dense Matter (WDM) regime were
measured using Al 1s-2p absorption spectroscopy
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« A CH foil with a buried Al tracer layer was directly irradiated with a
square and shaped pulse drive with peak intensities of 5% 1013 to
1x107° W/cm?.

 The measured spectra were modeled with PrismSPECT to infer T,
and p (10 <T_.< 40 eV, 3 < p < 11 g/cm3) assuming uniform conditions in
the Al layer

* The level of shock-wave heating and timing of heat-front penetration
were compared with the 1-D hydrocode LILAC to test thermal-transport
models.

* Nonlocal and flux-limited (f=0.06) thermal transport models accurately
predict measurements while the shock transits the foil.
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The temperature and density of the shock-heated and
compressed matter are set by the laser pulse shape
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Heat flux in LILAC is calculated using a flux-limited

or a honlocal thermal-transport model
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LILAC (1-D hydrodynamics code)1
» Laser absorption with ray trace

» Radiation transport
* Equation of state (SESAME)
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£
» Thermal transport ET >
— flux-limited model, = e
Qe =Min (qsp. f < Gps) B -
- classical Spitzer flux:2  F
Qgy = —KVT
— free streaming flux:
Grs =NnTvy
— flux limiter3 f (0.04 < f < 0.1) Radius (um)

(gsy is invalid in plasmas
with strong T, gradient)

The strength of the shock wave depends

» Nonlocal model? (no flux limiter) on thermal-transport models.
acts like a time-dependent flux

limiter

1J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
2R. C. Malone, R. L. McCrory, and R. L. Morse, Phys. Rev. Lett. 34, 721 (1975).
3J. Delettrez, Can. J. Phys. 64, 932 (1986).

E15064c 4. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006).



Al absorption spectroscopy experiments were performed
on OMEGA using continuous Sm spectrum in 1.4 to 1.7 keV
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An in-situ calibration of the x-ray streak camera was performed
to eliminate background light from the measured signals.
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The measured spectra were fit with PrismSPECT to infer
Te and p assuming uniform conditions in the Al layer
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The measured spectra created by the heat front
were qualitatively compared with the modeled
spectra to determine the range of T, in the Al layer.




Strong shock waves and isentropic compression were
studied using square and shaped pulse drives
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Shock-wave pressure in the 10-70 Mbar range is generated.




Higher compression is achieved with a shaped laser-
pulse drive compared with the square pulse
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The LILAC simulations using f = 0.06 and the nonlocal
model agree with the experimental results for the
square laser-pulse drive
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The initial shock-wave heating predicted by LILAC
using f = 0.06 or the nonlocal model agrees with

the measurements for the shaped laser pulse drive .
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The discrepancies between the measured and predicted
T. are observed at late times of the drive.
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Predicted T, from a 2-D simulation is closer to the
measurements than the 1-D prediction at late time
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The lateral heat flow in a 2-D geometry results in a
- lower radiative heating of the Al than in 1-D geometry.
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Summary/Conclusion

T, and p in the Warm Dense Matter (WDM) regime were
measured using Al 1s-2p absorption spectroscopy
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« A CH foil with a buried Al tracer layer was directly irradiated with a
square and shaped pulse drive with peak intensities of 5% 1013 to
1x107° W/cm?.

 The measured spectra were modeled with PrismSPECT to infer T,
and p (10 <T_.< 40 eV, 3 < p < 11 g/cm3) assuming uniform conditions in
the Al layer

* The level of shock-wave heating and timing of heat-front penetration
were compared with the 1-D hydrocode LILAC to test thermal-transport
models.

* Nonlocal and flux-limited (f=0.06) thermal transport models accurately
predict measurements while the shock transits the foil.
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