Study of target neating induced by fast electrons in mass limited targets

IORACE Alessio¹⁾, BATANI Dimitri¹⁾, REDAELLI Renato¹⁾, FOURMENT Claude²⁾, SANTOS Joao²⁻³⁾, MALKA Gerard³⁾, BOSCHERON Alain⁴⁾, CASNER Alexis⁵⁾, NAZAROV Wigen⁶⁾, KOENIG Michel⁷ VINCI Tommaso⁷⁾, OKANO Yasuaki⁸⁾, INUBUSHI Yuichi⁸⁾, NISHIMURA Hiroaki⁸⁾, MAGUNOV Alexander⁹⁾, FLACCO Alessandro¹⁰⁾, SPINDLOE Chris¹¹⁾, TOLLEY Martin¹¹⁾.

) University of Milano Bicocca, Italy 2) CELIA, Université de Bordeaux 1/ CNRS/CEA, Talence, France3) CENBG, Université de Bordeaux 1/ CNRS - IN2P3, Gradignan, France 4) CEA/CESTA Le BARP, France 5) CEA-DAM 3ruyeres-le-Chatel, France 6) University of St. Andrews, UK 7) LULI, Ecole Polytechnique, Palaiseau, France 8) Institute of Laser Engineering, Osaka University, Japan 9) General Physical Institute, Russian Academy of Sciences, Moscow, Russia 10) LOA, Ecole Polytechnique, Palaiseau, France 11) RUTHERFORD Appleton Laboratory, UK.

He-like Cl ion

1s(2s² 1S)²S_{1/2}

----1s2Es

----1s2Ep

42.5

1s(2s2p1P) 2F 1s2Ec 3/21s(2s2p3P) 2P

1s(2021S)2S

1s(2p2 3P)2P, 35

d.a

q,r 2765.5 -1.3

4.4724 3(Å)

152p³P

If we consider the Omega EP Maximum Intensity beam ~2x10²⁰W/cm² , assuming contrast ratio of 10⁻⁷, the pre-pulse intensity is almost equal to the Alisé one The ablation pressure produced by a 2x10^{^13}W/cm² beam is given by

The hot electron temperature is given by the Beg's formula:

 $T_{hot}(keV) = 100 \times \left(\frac{I(W/cm^2)}{10^{17}W/cm^2}\right)^{1/5} \lambda^2(\mu m) \approx 200 keV$

tal number of electrons in the target is 7x1016 and the ion nu

Ni ~ 1/3 Ne, taking into account the energy in the pre -pulse E_{pre} = 1.8J and 0.74 J of ionization energy we found that the total energy on target is

 $E_{tot} = E_{nre} + E_{ion} + E_{be} + E_{ion} + E_{hot} = 9.3J$

The correspondent shock wave velocity in C_sH_s plastic is 31000 m/s and the tra layer would be reached 320 ps after the pre-pulse action. There are three possibilities to keep high density

	Reduce the pre pulse duration, i.e using fast pockels cell	
Cut the pre pulse or		Use tamped targets preserve the trace
strongly reduce its		layer at solid density