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Can we describe and measure new state of matter?
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Remarkable prediction in WDM/HDM
- Heating, specific heat
- Liquid-vapor transition
- Hydrodynamic expansion
- Conductivity change (low o - high o)
- Optical properties
- Black glass (Im(g) > Re(g) > 0)
- Electronegative plasma
- Neutral phase of ionic solids,
(Na*Cl-(solid)=Na*Cl- (liquid)—=>Na°Cl°(plasma)
- Mixed valence and self-crossing
- Quantum hall effect

Temperature (eV)
=
Mo

101

102 1 ,
Density ( g/cm>)

Hot solid/liquid
(high-T condesnsed
matter)

Density
chemistry study



Can we describe and measure new state of matter?
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Sources to create WDM/HDM for science:

- Electrical heating, laser heating, x-ray
heating, lon-beam heating

With powerful laser or particle beams, high
pressure conditions above 100 Mbar have
been predicted for inertial confinement
fusion experiments.

Several possible researches to study DM :

- Hydrodynamic release L ~ 3C,(p,T)

- Electrical conductivity, o (®,T)

- Optical emission | = g(®,p,T)B(T)

- X-ray diffraction/absorption spectroscopy
or scattering (TS)

- Radiography ...

To measure accurately temperature, density, charge state is a key part of understanding
new state of matter, like as warm dense matter and high dense matter.



X-ray Thomson scattering is a powerful
diagnostic for probing dense matter

Non-collective Thomson Scattering (A* < Ap)
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The theoretical form factor for x-ray scattering provides
reliable plasma parameter for back scatter experiments
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Chihara, PRE (2000), Gregori et al, PRE (2003)



X-ray “Thomson’ scattering in warm solid density matter
was first demonstrated on beryllium
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Glenzer et al, PRL 90 175002 (2003).




Scattering targets are designed to produce
compressed Be plasmas for x-ray Thomson scattering

Target for 90° scattering
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A new Mn He-a backlighter at 6 keV was applied to penetrate through the
dense compressed Be

Disadvantage: double peaks from He-o and intercombination line



Estimation of photon numbers from scattering targets

Tarqget for 25° scattering
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1-D radiation hydrodynamic modeling calculates
dense matter condition with shock-propagation
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Electron density of n, =7 ~ 8 x 102 cm=3[~ 3.3 compression] and temperature of T, = 10~14
eV are expected under the experimental conditions.



First X-ray Thomson scattering spectrum from
compressed matter (Be) : non-collective regime, 90°

Scattering data at 4.6 ns measure compressed matter density [E = 30 eV] and temperature
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« For a Fermi-degenerate system, the width of the Compton spectrum yields the Fermi

energy, Eg= h?(3n?n,)?3/2m =30 eV

« Backscatter: n,=7.5x102% cm-3, T,=13 eV, Z=2, a~0.5 consistent with simulations

H.J. Lee et al. PRL 102, 115001 (2009).



Forward scattering data show plasmons at small
energy shifts

Scattering data at 4.4 ns measure compressed matter density [Er = 30 eV]
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 First direct measure of increased Fermi energy, plasmons, and adiabat in laser-
compressed matter, E; = ~40 eV

 Accurate characterization tool of laser-compressed matter

« Forward scatter: n,.=7.5x10% cm3, T =13 eV, Z=2, a~1.55, consistent with backscatter
results

H.J. Lee et al. PRL 102, 115001 (2009).



The experiments demonstrate a direct measurement of
the degeneracy and adiabat in single-shocked foils
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For a Fermi-degenerate system, the width of the Compton spectrum yields the Fermi
energy; E. =#%/2m_(37z°n,)*"

Fermi energies inferred from the measured densities from the Compton and plasmon
scattering data are compared with the Hugoniot data predicted by LEOS.



Experimental conditions for counter-propagating shocks

For 140° scattering experiment Pinhole camera image of counter-propagating shock

Backlighter;
each 7 beams

6 Heater
beams

i 6 Heater
beams
_\ n@gn/ :
v

Axis : P1-P12, TIM5 as a target positioner
Laser : Driver: SG1018, Max Power [1ns, 500 J]

12 heater beams with SG4s

No DPR, stacked to 3 ns pulses

14 BL beams: delayed to ~3 ns, No SSD, No DPR, No DPP
Primary diagnostics : XRFC4 coupled to GTS in TIM3; CCD5
Secondary TIM diagnostics : 2x pinhole XRFC in TIM2 and TIM4, SSCA in TIM1




Shock velocity estimation from 3-4 ns single pulse

From the Rankine-Hugoniot relation,
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Po: Po» Eg @nd p, P, E: mass density, Pressure, and
Energy of before and after shock travel.

us: shock velocity
u,: particle velocity behind the shock.
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From experimental data,
shock travels into solid Be with ug ~ 40 um/ns.

In case of counter-propagating shock, two shocks
starts colliding at ~ 3.1 ns.

This agrees well with the radiation-hydrodynamic
simulation.



Hydrodynamic simulation of counter-propagating shocks
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Compton spectrum before counter propagating shocks collide
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Compton scattering spectrum reflects the density and temperature of shock-compressed Be
by single shock from 3ns heater beams.



Compton spectrum after counter propagating shocks collide
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Compton scattering spectrum shows that we could reach over 4 times compression by
colliding two shocks.



Conclusions

e X-ray Thomson scattering has been developed for accurate
measurements of temperatures and densities in dense matter

 Non-collective scattering (Back scatter)
— Intensity and shape of Compton spectrum is sensitive to T,
— Width of Fermi-degenerate Compton spectrum is sensitive to n,
— Elastic (Rayleigh) scattering: Z;., diagnostics
e Collective scattering (Forward scatter)
— Observation of Plasmons: n,

« Combination of collective and non-collective x-ray scattering
provide the capability to measure accurately the plasma quantities
of electron density, electron temperature, and Z

* First direct measure of increased Fermi energy, plasmons, and
adiabat in laser-compressed matter

 Higher compression over 4 times can be reached through counter-
propagating shocks or multiple shocks. (under analysis)
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