Fusion Gamma-ray Measurements using Gas Cherenkov Detector

Yongho Kim
Los Alamos National Laboratory, Los Alamos, NM

GRH Team
Hans Herrmann, Scott Evans, James Langenbrunner, Carlton Young, Joe Mack, Tom Sedillo, and Aaron McEvoy (LANL)
Colin Horsfield and Michael Rubery (AWE)
Lucille Dauffy and Wolfgang Stoeffl (LLNL)

First OMEGA User’s Group Workshop, April 29 – May 1, 2009
GCD/GRH has been developed by LANL in collaboration with AWE and LLNL

- Gas Cherenkov Detector (GCD)
 - Fusing γ's
 - DT Implosion
 - Be Compton Converter
 - Cherenkov Radiation
 - CO_2
 - Relativistic electron
 - Tungsten Shielding
 - Cassegrainian optics
 - PMT
 - PMT Signal
 - Bias Voltage
 - Threshold Energy = down to 6.3 MeV (CO_2 @ 100 psi)
 - PMT & Streak Camera-based (tested)
 - $\sim 10^{11}$ min. n-yield @ 20 cm

- Gamma-ray Reaction History (GRH)
 - NIF
 - Fusing γ's
 - DT Implosion
 - Be Compton Converter
 - Cherenkov Radiation
 - CO_2, or SF_6
 - Off-axis Parabolic Mirror
 - Pressure Window
 - Adjustable flat mirror
 - Threshold Energy = down to 3.5 MeV (SF_6 @ 200 psi)
 - PMT & Streak Camera-based
 - 3×10^{13} min. n-yield @ 6m

- Omega (TIM-based)
 - Threshold Energy = down to 6.3 MeV (CO_2 @ 100 psi)
 - PMT & Streak Camera-based (tested)
 - $\sim 10^{11}$ min. n-yield @ 20 cm
Threshold GCD captures 16.75 MeV DT Fusion Gamma-rays

\[\gamma \rightarrow (\gamma, e) \text{ Cherenkov Radiation (e, } \lambda) \]

PMT scope

Two stage converter
GRH is an essential instrument for NIF fusion reaction studies

Bang Time Accuracy

<table>
<thead>
<tr>
<th></th>
<th>GRH6m</th>
<th>GRH15m</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD(1e14)</td>
<td>< 25 ps</td>
<td></td>
</tr>
<tr>
<td>THD(1e16)</td>
<td>< 25 ps</td>
<td>< 20 ps</td>
</tr>
<tr>
<td>DT(1e19)</td>
<td>< 20 ps</td>
<td></td>
</tr>
</tbody>
</table>

minimum n-Yield = \(3 \times 10^{13}\) for 100 detected DT-\(\gamma\)'s with a 8 MeV threshold

Burn Width Accuracy

<table>
<thead>
<tr>
<th></th>
<th>GRH6m</th>
<th>GRH15m</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD(1e14)</td>
<td>< 10 ps</td>
<td></td>
</tr>
<tr>
<td>THD(1e16)</td>
<td>< 10 ps</td>
<td>< 3 ps</td>
</tr>
<tr>
<td>DT(1e19)</td>
<td>< 3 ps</td>
<td></td>
</tr>
</tbody>
</table>

minimum n-Yield = \(\sim 10^{16}\)

minimum n-Yield = \(\sim 3 \times 10^{14}\)
A challenge faced by the GRH is potential interference of γ_p with various γ_s

- NIF indirect implosions generate various gamma-rays
- Fusion gammas (γ_p)
 - DT (16.75 MeV)
 - HT (19.8 MeV)
- n-induced secondary gammas (γ_s): (n,γ), (n,n')γ, (n,p)γ …
 - Capsule materials (12C @ 4.44 MeV, 16O @ 6.1 MeV)
 - May be used to bolster GRH signal (~synchronous)
 - Possible time-dependent ρR diagnostic
 - Hohlraum materials (Au, U, Al, Si)
 - May also be used to bolster signal, but must be aware of BT shift (< 60 ps)
N-induced Secondary Gammas from Hohlraum & TMP can be thresholded out (calculation by Lucille Dauffy)

- ~100x more Secondary γ's than Fusion γ's
 - Cross sections uncertain, needs experimental validation
- ~60 ps delay between Fusion & Secondaries γ's
 - Insignificant Bang Time shift (<10 ps) down to ~6 MeV threshold
Hohlraum γ’s never dominate the signal (by Hans)

- DT γ’s dominate signal (i.e., >3x) for Thresholds 7.5 to 15 MeV
- C12 γ’s dominate at <4.5 MeV
- Hohlraum γ’s never dominate, but can be comparable to DT γ’s at 4.5 to 7.5 MeV thresholds
Experimental goal is to simulate γ_s from a NIF hohlraum & Proximity Sources

- NIF hohlraum simulation experiment at OMEGA
 - GRH performance study (threshold response)
 - Gamma interference study (bang time, burn width)
 - Code (MCNP/ACCEPT) validation
 - If neutron rate and (n,γ) cross-sections are known, γ_s can be a GRH code validation source
 - cf) Calibrated ‘electron’ (LINAC) and ‘gamma’ (HIGS) source are also used for validation
 - Uncertainty in fusion gamma branching ratio
- γ_s as a GRH calibration source
 - γ_s serves as in-situ GRH calibration source
 - γ_s serves as a broad energy source
 - various puck materials are available (Al, Al2O3, Cu,…)
 - Provide one method for Branching Ratio ($=T(d,\gamma)/T(d,n)$) determination
 - Multiple methods needed to reduce uncertainty
‘Hockey Puck’ experiments are conducted at the OMEGA laser facility (Nov. 2008 and April 2009)

Diameter of Al puck = 3 cm
Thickness of Al puck = 0.5 cm (+ 0.2 cm holder side)
GCD Signal Configuration

LANL Gas Trigger
T-0 = 4999.9680 μs

PMT 110-001
QE~20%
Air hose
EMI

assuming 1.2 ns/ft for signal cable
Clean Signals but improperly located puck

- gamma attenuation
 \[1 - \frac{\gamma_p}{\gamma_{po}} = \sim 0.081 \]
 \sim 8.1 \% measured
 (more scattering)

- \sim 550 \text{ ps } \gamma_s \text{ pulse}
Data Analysis: Primary/Secondary ratio & timing (by Hans)

- Secondary/Primary ratio = 21.6%
- Secondary signal shifted by 704 ps
 - γ's: c = 29.98 cm/ns (33 ps/cm); 14.1 MeV n's: v_n = 5.19 cm/ns (193 ps/cm)
 - Neutrons are delayed 160 ps/cm relative to γ's
 - Face of Puck is at 704/160 = 4.40 cm
 - Back end of secondary signal should be smeared out by ~90 ps relative to the primary signal (80 ps for 0.5 cm thick puck + 10 ps for Doppler spreading), but appears to only be smeared by ~20 ps
Secondary gamma production and Primary gamma attenuation are observed.

![Graph showing SCD2 Voltage / (Gain * Neutron Yield * 1e-13) vs Time (ns) with different materials and shots.

Key:
- Red: Without Puck (shot 5,8)
- Blue: Al puck (shot 2,4)
- Green: Al2O3 (shot 6,7)
- Dashed blue: Shot 9
- Dotted blue: Shot 10 Al]
\[\frac{\gamma_s}{\gamma_p} (\text{Al, 100psi}) = 0.107, \quad \frac{\gamma_s}{\gamma_p} (\text{Al2O3, 100psi}) = 0.076 \]
\[\frac{\gamma_s}{\gamma_p} (\text{Al, 65 psi}) \sim 0.017, \quad 992\text{ps} / 160\text{ps} = 6.2 \text{ cm} \]
Summary

• Successful day at OMEGA on Nov. 2008
 – Aluminum puck (D = 3 cm, t = 0.5 cm) at two locations
 – $\gamma_s/\gamma_p \sim 0.216$ and $\gamma_s/\gamma_{po} \sim 0.198$ at 4.4 cm or less location

• Successful day at OMEGA on April 8, 2009
 – $\gamma_s/\gamma_p \sim 0.107$ at Al, 6 MeV
 – $\gamma_s/\gamma_p \sim 0.076$ at Al2O3, 6 MeV
 – $\gamma_s/\gamma_p \sim 0.017$ at Al, 8 MeV

• Next OMEGA shot day on May 13-14 or later
 – Additional puck materials (Cu, Si, SiO2)

• A coupled MCNP/ACCEPT calculation (by Jamie, Carl, Joe)
 – Provide one method for Branching Ratio ($=T(d,\gamma)/T(d,n)$) determination