Observations of spatiallyresolved line spectra in OMEGA direct-drive implosions

H. M. Johns¹, R. C. Mancini¹, T. Nagayama¹, P.Hakel¹,
V. A. Smalyuk², S. P. Regan², J. Delettrez²

¹Physics Department at University of Nevada, Reno College of Science: Reno, Nevada 89557 ²Laboratory for Laser Energetics, University of Rochester: Rochester, New York 14623

Titanium spectral model

 Step 1: compute opacity and emissivity database with CRAK¹, using CATS² atomic data:

$$k_{v}(\mathbf{x},t,\mathbf{n},v) = \sum_{i} \left(\sum_{j < i} \left(N_{j} B_{ji} - N_{i} B_{ij} \right) \phi_{ij,v} \frac{h v_{ij}}{4\pi} \right)$$

- Database grid:
 - 31 Te x 51 Ne x 3601 eV
 - 20eV Te resolution (300 900eV)
 - 5.4x10²³cm⁻³ Ne resolution (3x10²⁴ – 3x10²⁵cm⁻³)
 - 4460-4820eV, 0.1eV resolution
- Improvement:
 - addition of high-order satellite transitions with n = 3 spectator electrons

- Step 2: transport continuum radiation coming from the core through Ti-doped layer in the shell to compute absorption spectra to determine Ti areal density.
- Step 3: use data recorded from simultaneous views along several TIM's to construct a 3D map of areal density modulations for analysis and comparison with hydrodynamic simulations.

¹P. Hakel, R. C. Mancini. U. Andiel, K. Eidmann, F. Pisani, G. Junkel_Vives and J. Abdallah, HEDP 5, 35 (2009)

²Los Alamos National Laboratory, T-4 group atomic codes online: www.t4.lanl.gov (2007)

K-shell transitions included in the model

- K-Shell transitions of Ti⁺¹³ to Ti⁺²⁰ ions
 - Transitions of the form:

$$1s^2 2s^n 2p^m \longrightarrow 1s^1 2s^n 2p^{m+1}$$

- Final states are auto-ionizing excited states above the 1st ionization potential
 - Except for Ti⁺²⁰ 1st excited state

Additional satellite contributions

- K-shell transitions with n = 3 spectator electrons
 - Transitions of the form:

 $1s^{2}2s^{n}2p^{m}3s \longrightarrow 1s^{1}2s^{n}2p^{m+1}3s$ $1s^{2}2s^{n}2p^{m}3p \longrightarrow 1s^{1}2s^{n}2p^{m+1}3p$ $1s^{2}2s^{n}2p^{m}3d \longrightarrow 1s^{1}2s^{n}2p^{m+1}3d$

- More complete accounting of ion populations
- Satellite transitions are expected to be a significant source of broadening at late implosion times

Radiation transport model

- The ends of each image chord sample information from the shell.
 - Each chord can be represented as a 1-d slab.
 - The observed Ti absorption I^e is fed by Bremsstrahlung emission from the core, I^o.
- We can calculate a synthetic spectrum I_v for any given Te and Ne values based on a database of photon-energy dependent emissivities and opacities, and an integral of the radiation transport equation along the chord of length z.

Analysis of absorption spectrum

- Black trace: represents Ti absorption spectra from a lineout of OMEGA shot 26626¹, with standard deviations shown in green.
- Red trace: represents model approximation I_v
- Tan trace: is fit to continuum I_v^o determined from lineout.
- Typical range of χ^2 is 0.5 1.5.
- Analysis yields areal-density in the doped layer.
- However, if spectral resolution is sufficient, Te and Ne can also be extracted.

¹V. A. Smalyuk, S. B. Dumanis, F. J. Marshall, J. A. Delettrez, D. D. Meyerhofer, S. P. Regan, T.C. Sangster and B. Yaakobi Phys. Plasmas **10**, 3 (2003)

Weighted least-squares minimization¹

- X² will be calculated for each Te, Ne value in the database, but must be minimized with respect to pr (the unknown) to obtain the best fit.
- Quantitative measure of goodness-of-fit:
 - $X^2 \sim 1$ the fit is within the uncertainties ("Good")
 - $X^2 \ll 1$ the uncertainties are too high
 - $X^2 >> 1$ the fit is outside the uncertainties ("Bad")

¹P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd ed. McGraw Hill: Boston, ©2003

X-ray imaging of direct-drive OMEGA implosions

- Argon tracer added for core spectroscopic diagnostic of electron temperature and density
- Titanium-doped tracer layer added for diagnosis of un-ablated/compressed shell
- □ Three identical DDMMI
 - DDMMI = Direct-Drive Multi-Monochromatic x-ray Imager
 - Record gated narrow-band core image data ($\Delta t \sim 50 \text{ps}$, $\Delta x \sim 10 \mu \text{m}$, E/ $\Delta E \sim 150$)
 - Three identical DDMMI were built and fielded along quasi-orthogonal directions (TIM3, TIM4, and TIM5)
 - Space-resolved spectra can also be extracted from data
- □ Two streaked x-ray crystal spectrometers
 - o SSCA, high-speed
 - o SSC1, low-speed

MMI data processing: narrow-band image reconstruction

• Space-integrated spectrum can be computed by summing up intensities vertically for each photon energy

 $\Delta E \sim 70 eV$

Spatially-resolved spectra from spectrally-resolved pinhole core images

- Space-integrated spectrum can be extracted from MMI data by summing up intensities vertically for each photon energy
- Space-resolved spectrum: select only a given spatial region of the image (same for all images) and compute spectra collecting contributions ONLY from this region
- **Important:** both Te and Ne are extracted from spectra analysis
- Limitations: space resolution, and signal-to-noise ratio

Integration domain of spatially-resolved spectra

Each spatial region of the image represents a spatial integration over a slab in the core slice

- The domain of integration in the core of the spatially-resolved spectra is a chord of finite cross-section determined by the spatial-resolution of the MMI x-ray imager
- In the schematic figure, this chord is indicated by an orange slab
- The spatially-resolved argon emission spectrum provides information about the spatial structure of the implosion core
- The spatially-resolved titanium absorption spectrum provides a map of the areal-density of the un-ablated plastic shell confining the core

TIM 5, Frame 3

TIM 4, Frame 4

TIM 3, Frame 4

Conclusions

- We have discussed spectral lineouts from OMEGA shots with Ti-doped shells and Ar-doped cores.
- These lineouts are time- (gated) and spatially-resolved.
- Each lineout is produced by integrating small regions of the image that, in turn, correspond to integrations along chords in the implosion core.
- Lineouts show Ti absorption in the 4000-5000eV range with some He-α and Lyman-α emission features.

- A method for analyzing sets of spatially-resolved Ti absorption spectra for pr determination, which can be used to determine 3D maps of pr modulations in the imploded shell, has been discussed.
- Surface plots of pr modulations can be compared with the results of 2D and 3D hydrodynamic simulations to be conducted later this year.

Work supported by DOE/NLUF Grant DE-FG52-07NA28062, and LLNL