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Warm dense matter describes states of matter at the shared
frontier of plasma and condensed matter physics
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Warm dense matter can be achieved through isochoric heating
of a solid by laser-accelerated MeV protons
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We performed our experiments on the Titan laser at LLNL,
firing at 150TW
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We used an absolutely calibrated streaked optical pyrometer SESAME 3718 was found to better fit our data than LEOS, but
(SOP) to measure thermal emission from the heated Al sample neither could be categorically rejected within error
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Find proton input scalings that give fit within > Accuracy of EOS models confirmed
SOP first used with proton heating by Patel, et al. Phys. Rev. Lett. 91, 1250004 SOP error bars within ~ 20%
Simultaneously, we measured the free expansion of the Future experiments will enable studying WDM in greater detail
heated Al sample using a chirped pulse interferometer (CPI) by refining and expanding upon these techniques

General improvements, e.qg.:
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 Texas PW: a major research thrust

10+
Partially accounts for doppler © * Several other groups pursuing & expanding on these techniques
shifting effect on phase, for: ©
Atresolution ~ Atcompressed
J. P. Geindre, P. Audebert, S. Rebibo, and J. C. Gauthier. O Py - oo
Optics Letters, 2001. ! ' ! ' ! ' !
02 40 e Proton heated WDM

experimentson =~ - °

In HYADES, we modeled the conditions of the experiment,
scaling proton input to reproduce the SOP signal

What could we do with two petawatt-class beams, and more?
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