Precision Equation-of-State (EOS) Measurements Using Laser-Driven Shock Waves On the OMEGA Laser

M. A. Barrios
University of Rochester
Laboratory for Laser Energetics
Summary

Precision equation-of-state (EOS) measurements are obtained using quartz as a standard

- The impedance-matching (IM) technique has been used for decades to obtain EOS measurements, mainly using opaque standards.

- Both random and systematic errors, inherent in IM, must be addressed.

- Transparent standards (quartz) allow one to measure the shock velocity (U_s) within the standard, reducing random errors.

- This high-precision technique was applied to CH and CH$_2$.
Collaborators

D. E. Fratanduono
T. R. Boehly
D. D. Meyerhofer

University of Rochester
Laboratory for Laser Energetics

D. G. Hicks
P. M. Celliers
J. Eggert

Lawrence Livermore National Laboratory
Rankine–Hugoniot equations

\[\rho_0 U_s = \rho_1 (U_s - U_p) \]
\[P_1 - P_0 = \rho_0 U_s U_p \]

The measurement of two variables is needed to close these equations; e.g., \(U_s = F(U_p) \).
Impedance Match $U_s = F(U_p)$

The particle velocity and pressure are conserved across a contact interface.
Need to minimize experimental error and address systematic errors for precision EOS measurements

- Measurement accuracy depends on knowledge of standard.
- Most IM studies quote only random errors.
- Cannot propagate systematic errors using theoretical EOS.

- Random errors

\[
\frac{\delta \rho}{\rho} \approx (\eta - 1), \quad \eta = \frac{\rho}{\rho_0}; \quad \eta \approx 4 - 6 \rightarrow \frac{\delta \rho}{\rho} \propto (3 - 5) \times \delta u_s
\]
Systematic Errors

At high pressures inconsistencies exist between EOS models and data for aluminum.
Random Errors

Higher precision is achieved using a transparent standard

- U_s is inferred from transit times
- Laser
 - Sample
 - U_s Δx

VISAR-1 shot 29425

IM velocity

VISAR-1 shot 52118

Instantaneous velocities

SiO$_2$ pusher

U_s is inferred from transit times
Quartz validity as a standard is established through ample study of its EOS and agreement with previous results.

\[\alpha\text{-quartz EOS (Al as reference)} \]

\[\begin{align*}
\text{GPa} & \quad 140 & 450 & 945 & 1594 \\
\text{Laser} & \quad \sim 0.3 \text{ ns} \\
\text{Nuclear} & \quad \sim 10 \mu\text{s} \\
\text{Gas gun explosive} & \quad \sim 100\text{s of ns}
\end{align*} \]

\[\begin{align*}
\text{Release isentrope (±)} \\
\text{Direct impact}
\end{align*} \]

\[\begin{align*}
\text{Direct measurement}^1 & \quad \text{IM with Al standard}^1 \\
\text{IM with SiO}_2 \text{ standard}^2
\end{align*} \]

\[\begin{align*}
\text{Particle speed (µm/ns)} & \quad 0 & 5 & 10 & 15 & 20 \\
\text{Shock speed (µm/ns)} & \quad 5 & 10 & 15 & 20 & 25 & 30 & 35 \\
\text{Pressure (GPa)} & \quad 0 & 20 & 40 & 60 & 80 & 100 & 120
\end{align*} \]

\[\begin{align*}
\text{Particle speed (km/s)} & \quad 5 & 10 & 15 & 20 & 25 \\
\text{Particle speed (µm/ns)} & \quad 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 \\
\end{align*} \]

\[\begin{align*}
\text{D. G. Hicks et al., Phys. Plasmas} & \quad 12, 082702 (2005). \\
\text{M. D. Knudson et al., J. Appl. Phys.} & \quad 97, 073514 (2005). \\
\end{align*} \]
Precision EOS data more tightly constrain polystyrene (CH) EOS

![Graph showing pressure vs. density with EOS data points and various EOS models.](image)
Precision EOS data more tightly constrain polystyrene (CH) EOS and polypropylene (CH$_2$) EOS.
Summary/Conclusions

Precision equation-of-state (EOS) measurements are obtained using quartz as a standard

- The impedance-matching (IM) technique has been used for decades to obtain EOS measurements, mainly using opaque standards.

- Both random and systematic errors, inherent in IM, must be addressed.

- Transparent standards (quartz) allow one to measure the shock velocity (U_s) within the standard, reducing random errors.

- This high-precision technique was applied to CH and CH$_2$.